Matrix Swapping II
Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1804 Accepted Submission(s): 1199
Problem Description
Given an N * M matrix with each entry equal to 0 or 1. We can find some rectangles in the matrix whose entries are all 1, and we define the maximum area of such rectangle as this matrix’s goodness.
We can swap any two columns any times, and we are to make the goodness of the matrix as large as possible.
Input
There are several test cases in the input. The first line of each test case contains two integers N and M (1 ≤ N,M ≤ 1000). Then N lines follow, each contains M numbers (0 or 1), indicating the N * M matrix
Output
Output one line for each test case, indicating the maximum possible goodness.
Sample Input
3 4
1011
1001
0001
3 4
1010
1001
0001
Sample Output
4
2
題意:給出N*M的01矩陣,求出任意交換列後全是1的最大矩陣面積
戳這裡看這題的簡易版
代碼
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<math.h>
using namespace std;
const int maxn=;
int DP[maxn][maxn];//以(i,j)為底的高度
bool cmp(int x,int y)
{
return x>y;
}
int main()
{
int N,M;
int flag[maxn];//臨時性數組
char str[maxn];
while(~scanf("%d%d",&N,&M))
{
for(int i=; i<=N; i++)
for(int j=; j<=M; j++)
DP[i][j]=;
int result=;
for(int i=; i<=N; i++)
{
scanf("%s",str+);
for(int j=; j<=M; j++)
{
str[j]=='0'?DP[i][j]=:DP[i][j]=DP[i-][j]+;
flag[j]=DP[i][j];
str[j]='\0';
}
sort(flag+,flag+M+,cmp);
for(int j=; j<=M; j++)
result=max(result,flag[j]*j);
}
printf("%d\n",result);
}
return ;
}