開公衆号啦,分享讀書心得,歡迎一起交流成長。
Pandas是Python資料科學生态中重要的基礎成員,功能強大,用法靈活,簡單記錄之。
資料結構
兩種核心資料類型,Series和DataFrame。
- Series: 1D labeled homogeneously-typed array
- DataFrame: 2D labeled, size-mutable tabular structure with potentially heterogeneously-typed column
為何要用兩種資料結構?
The best way to think about the pandas data structures is as flexible containers for lower dimensional data. For example, DataFrame is a container for Series, and Series is a container for scalars. We would like to be able to insert and remove objects from these containers in a dictionary-like fashion. Intro to Data Structures — pandas.
Series
Series is a one-dimensional labeled array capable of holding any data type (integers, strings, floating point numbers, Python objects, etc.).
可以看做有标簽(預設是整數序列RangeIndex;可以重複)的一維數組(同類型)。是scalars的集合,同時也是DataFrame的元素。
>>> s = pd.Series(np.random.randn(3), index=['a', 'b', 'a'])
a -0.127293
b -0.439537
a 0.727805
dtype: float64
複制
Series資料類型is ndarray-like and dict-like。由于是one-dimensional array,是以API可以很好地跟ndarray相容;由于是labeled array,是以API可以很好地跟dict相容,其label(index)可以看做dict中的key。
>>> s[0] # ndarray like
-0.1272931981576878
>>> np.negative(s) # vectorized operations
a 0.127293
b 0.439537
a -0.727805
dtype: float64
>>> s.values # to ndarray
array([-0.1272932 , -0.43953716, 0.7278052 ])
>>> s['b'] # dict like
-0.4395371588351514
>>> s.to_dict() # to dict
{'a': 0.727805195734351, 'b': -0.4395371588351514}
複制
DataFrame
DataFrame is a 2-dimensional labeled data structure with columns of potentially different types. You can think of it like a spreadsheet or SQL table, or a dict of Series objects. It is generally the most commonly used pandas object.
可以通過多種方式建構一個DataFrame。
- Dict of 1D ndarrays, lists, dicts, or Series
- 2-D numpy.ndarray
- Structured or record ndarray
- A Series
- Another DataFrame
# You can pass index (row labels) and columns (column labels) arguments.
pd.DataFrame(data=None, index=None, columns=None, dtype=None...)
複制
簡單的Demo
>>> d = {'one': [1., 2., 3., 4.], 'two': [4., 3., 2., 1.]}
>>> df = pd.DataFrame(d)
>>> df
one two
0 1.0 4.0
1 2.0 3.0
2 3.0 2.0
3 4.0 1.0
# The row and column labels can be accessed respectively by accessing the index and columns attributes
>>> df.index
RangeIndex(start=0, stop=4, step=1)
>>> df.columns
Index(['one', 'two'], dtype='object')
複制
Index
Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects. An Index instance can only contain hashable objects.
Series和DataFrame都有對應的Index,Index本身是很有趣的資料結構。可以将其看做an immutable array or as an ordered set。其表現如下代碼片段所示
>>> index = pd.Index([2, 3, 5, 7, 11])
>>> index
Int64Index([2, 3, 5, 7, 11], dtype='int64')
# operates like an array
>>> index[::2]
Int64Index([2, 5, 11], dtype='int64')
# like numpy ndarray, but immutable
>>> print(index.size, index.shape, index.dtype)
5 (5,) int64
# Designed to facilitate operations such as joins across datasets,
# which depend on many aspects of set arithmetic.
>>> indexA = pd.Index([1, 3, 5, 7, 9])
>>> indexB = pd.Index([2, 3, 5, 7, 11])
>>> indexA & indexB
Int64Index([3, 5, 7], dtype='int64')
>>> indexA.intersection(indexB)
Int64Index([3, 5, 7], dtype='int64')
複制
Index有若幹個子類,其中比較常用的有
- RangeIndex: Index implementing a monotonic integer range
- Int64Index
- MultiIndex: A multi-level, or hierarchical, Index
- DatetimeIndex
MultiIndex相對複雜,在GroupBy操作中比較常用。
The MultiIndex object is the hierarchical analogue of the standard Index object which typically stores the axis labels in pandas objects. You can think of MultiIndex as an array of tuples where each tuple is unique.
一個較有效的角度,是将MultiIndex看成一個多層組合key。
>>> arrays = [[0, 0, 1, 1], ['red', 'blue', 'red', 'blue']]
>>> mi = pd.MultiIndex.from_arrays(arrays, names=['gender', 'color'])
>>> mi
MultiIndex(levels=[[0, 1], ['blue', 'red']], # sequence of arrays. The unique labels for each level
labels=[[0, 0, 1, 1], [1, 0, 1, 0]], # Integers for each level designating which label at each location
names=['gender', 'color'])
>>> s = pd.Series(np.random.randn(4), index=mi)
gender color
0 red -0.185615
blue -1.191781
1 red 1.054579
blue -0.841271
dtype: float64
>>> df = pd.DataFrame(np.random.randn(4, 2), index=mi, columns=["c1", "c2"]); df
c1 c2
gender color
0 red 0.587486 -0.145549
blue 1.915447 1.066901
1 red 0.068751 1.363691
blue 0.044886 0.096707
# The index can back **any axis** of a pandas object.
>>> df = pd.DataFrame(np.random.randn(3, 4), index=["A", "B", "C"], columns=mi); df
gender 0 1
color red blue red blue
A 1.639192 -0.983447 -1.129612 0.373631
B -0.463904 1.989585 0.667576 0.840351
C -0.890905 -0.334301 -0.633911 -0.338430
>>> df.index
Index(['A', 'B', 'C'], dtype='object')
>>> df.columns # is also index
MultiIndex(levels=[[0, 1], ['blue', 'red']],
labels=[[0, 0, 1, 1], [1, 0, 1, 0]],
names=['gender', 'color'])
# indexing
>>> df = df.T
>>> df.loc[0]
A B C
color
red 0.855162 1.642578 -1.918263
blue 0.492383 -0.770525 0.374322
>>> df.loc[(0, 'red')]
A 0.855162
B 1.642578
C -1.918263
Name: (0, red), dtype: float64
>>> df.loc[(0, 'red'), 'A']
0.8551620714417688
>>> df.loc[([0, 1], ['red']), :]
A B C
gender color
0 red 0.855162 1.642578 -1.918263
1 red -1.153564 0.328648 -0.916944
複制
一個重點,就是當indexing的時候,tuple和list的作用是不同的。
It is important to note that tuples and lists are not treated identically in pandas when it comes to indexing. Whereas a tuple is interpreted as one multi-level key, a list is used to specify several keys. Or in other words, tuples go horizontally (traversing levels), lists go vertically (scanning levels).
對Series或DataFrame而言,有時候需要查找特定行,如果能用Index鎖定,效率會比較高。
Like a dict, a DataFrame's index is backed by a hash table. Looking up rows based on index values is like looking up dict values based on a key. In contrast, the values in a column are like values in a list. Looking up rows based on index values is faster than looking up rows based on column values.
參考資料
- pandas.Index
- MultiIndex / Advanced Indexing
- Indexing
Indexing
最基本的索引操作。
Operation | Syntax | Result |
---|---|---|
Select column | df[col] | Series |
Select columns | df[[col1, col2]] | DataFrame |
Select row by label | df.loc[label] | Series |
Select row by integer location | df.iloc[loc] | Series |
Slice rows | df[5:10] | DataFrame |
Select by boolean vec | df[bool_vec]) | DataFrame |
其中Boolean indexing、where和mask稍微複雜一點。
# boolean indexing, boolean index | & ~ grouped by using parentheses
>>> s = pd.Series(range(-1, 3))
>>> s[s < 0]
0 -1
dtype: int64
>>> s[(s > 0) & (s < 2)]
2 1
dtype: int64
# isin. the isin() method of Series returns a boolean vector
>>> s[s.isin([1, 2])]
2 1
3 2
dtype: int64
# boolean vec傳回subset,如果需要shape不變,可以用where
>>> s.where(s > 0)
0 NaN
1 NaN
2 1.0
3 2.0
dtype: float64
# You may wish to set values based on some boolean criteria. This can be done intuitively like so:
>>> s.where(s > 0, 0) # provide replacement, df[df < 0]類似,等同df.where(df < 0)
0 0
1 0
2 1
3 2
dtype: int64
# mask() is the inverse boolean operation of where.
>>> s.mask(s > 0)
0 -1.0
1 0.0
2 NaN
3 NaN
dtype: float64
複制
參考資料
- Indexing and Selecting Data
Map and Apply
Pandas裡幾個概念比較容易混淆,比如map、apply、applymap等。
Summing up,
apply
works on a row / column basis of a DataFrame,
applymap
works element-wise on a DataFrame, and
map
works element-wise on a Series.
>>> df = pd.DataFrame(np.random.randn(4, 3), columns=list('abc'), index=['Utah', 'Ohio', 'Texas', 'Oregon']); df
a b c
Utah 0.417494 -0.430255 0.320251
Ohio 0.828452 -0.823623 0.076611
Texas -1.224572 1.584230 0.138388
Oregon -1.305397 3.315600 2.979548
# Another frequent operation is applying a function on 1D arrays to each column or row.
# DataFrame’s apply method does exactly this:
>>> f = lambda x: x.max() - x.min()
>>> df.apply(f) # on columns
a 2.133849
b 4.139223
c 2.902937
dtype: float64
>>> df.apply(f, axis=1) # on rows
Utah 0.847749
Ohio 1.652075
Texas 2.808802
Oregon 4.620996
dtype: float64
>>> df.max()
a 0.828452
b 3.315600
c 2.979548
dtype: float64
# Element-wise Python functions can be used with applymap
>>> format = lambda x: '%.2f' % x
>>> df.applymap(format)
a b c
Utah 0.42 -0.43 0.32
Ohio 0.83 -0.82 0.08
Texas -1.22 1.58 0.14
Oregon -1.31 3.32 2.98
# map with series
>>> df['a'].map(format)
Utah 0.42
Ohio 0.83
Texas -1.22
Oregon -1.31
Name: a, dtype: object
複制
參考
- Difference between map, applymap and apply methods in Pandas
Group By
split-apply-combine範式,類似SQL中常見的Group By聚合操作。
- Splitting the data into groups based on some criteria.
- Applying a function to each group independently.
- Aggregation: compute a summary statistic (or statistics) for each group
- Transformation: perform some group-specific computations and return a like-indexed object
- Filtration: discard some groups, according to a group-wise computation that evaluates True or False.
- Combining the results into a data structure.
Split這一步将資料分組。
Pandas objects can be split on any of their axes. The abstract definition of grouping is to provide a mapping of labels to group names.
# demo DataFrame
>>> arrays = [['bar', 'bar', 'foo', 'foo'], ['one', 'two', 'one', 'two']]
>>> index = pd.MultiIndex.from_arrays(arrays, names=['first', 'second'])
>>> df = pd.DataFrame({'A': [1, 1, 2, 2], 'B': np.arange(4)}, index=index); df
A B
first second
bar one 1 0
two 1 1
foo one 2 2
two 2 3
# split
# The groups attribute is a dict whose keys are the computed unique groups and corresponding values
# being the axis labels belonging to each group.
>>> grouped = df.groupby(level=0)
>>> grouped.groups
{'bar': MultiIndex(levels=[['bar', 'foo'], ['one', 'two']],
labels=[[0, 0], [0, 1]],
names=['first', 'second']),
'foo': MultiIndex(levels=[['bar', 'foo'], ['one', 'two']],
labels=[[1, 1], [0, 1]],
names=['first', 'second'])}
# 周遊group
>>> for name, group in grouped:
... print(name)
... print(group)
bar
A B
first second
bar one 1 0
two 1 1
foo
A B
first second
foo one 2 2
two 2 3
複制
Apply這一步,比如Aggregation、Transformation、Filtration等
# Agg
>>> grouped.aggregate(np.sum)
A B
first
bar 2 1
foo 4 5
>>> grouped.agg([np.sum, np.mean, np.std])
A B
sum mean std sum mean std
first
bar 2 1 0.0 1 0.5 0.707107
foo 4 2 0.0 5 2.5 0.707107
>>> grouped.agg({'A': np.sum, 'B': np.max})
A B
first
bar 2 1
foo 4 3
複制
其他幾種操作
- Transformation
- Filtration
- Flexible Apply
參考
- Group By: split-apply-combine
Concat and Merge
Concat和Merge和SQL中操作比較類似,其API參數也比較清晰。
Concat操作。
>>> frames = [df1, df2, df3]
>>> result = pd.concat(frames)
>>> pd.concat(objs,
... axis=0,
... join='outer',
... join_axes=None,
... ignore_index=False,
... keys=None,
... levels=None,
... names=None,
... verify_integrity=False,
... copy=True)
複制
Merge. SQL中Join類似操作入口。
>>> pd.merge(left, right,
... how='inner',
... on=None,
... left_on=None,
... right_on=None,
... left_index=False,
... right_index=False,
... sort=True,
... suffixes=('_x', '_y'),
... copy=True,
... indicator=False,
... validate=None)
複制
參考
- Merge, join, and concatenate