标題:史豐收速算
史豐收速算法的革命性貢獻是:從高位算起,預測進位。不需要九九表,徹底颠覆了傳統手算!
速算的核心基礎是:1位數乘以多位數的乘法。
其中,乘以7是最複雜的,就以它為例。
因為,1/7 是個循環小數:0.142857...,如果多位數超過 142857...,就要進1
同理,2/7, 3/7, ... 6/7 也都是類似的循環小數,多位數超過 n/7,就要進n
下面的程式模拟了史豐收速算法中乘以7的運算過程。
乘以 7 的個位規律是:偶數乘以2,奇數乘以2再加5,都隻取個位。
乘以 7 的進位規律是:
滿 142857... 進1,
滿 285714... 進2,
滿 428571... 進3,
滿 571428... 進4,
滿 714285... 進5,
滿 857142... 進6
請分析程式流程,填寫劃線部分缺少的代碼。
//計算個位
int ge_wei(int a)
{
if(a % 2 == 0)
return (a * 2) % 10;
else
return (a * 2 + 5) % 10;
}
//計算進位
int jin_wei(char* p)
{
char* level[] = {
"142857",
"285714",
"428571",
"571428",
"714285",
"857142"
};
char buf[7];
buf[6] = '\0';
strncpy(buf,p,6);
int i;
for(i=5; i>=0; i--){
int r = strcmp(level[i], buf);
if(r<0) return i+1;
while(r==0){
p += 6;
strncpy(buf,p,6);
r = strcmp(level[i], buf);
if(r<0) return i+1;
______________________________; //填空
}
}
return 0;
}
//多位數乘以7
void f(char* s)
{
int head = jin_wei(s);
if(head > 0) printf("%d", head);
char* p = s;
while(*p){
int a = (*p-'0');
int x = (ge_wei(a) + jin_wei(p+1)) % 10;
printf("%d",x);
p++;
}
printf("\n");
}
int main()
{
f("428571428571");
f("34553834937543");
return 0;
}
#include <stdio.h>
#include <stdlib.h>//計算個位
#include <string.h>
int ge_wei(int a)
{
if(a % 2 == 0)
return (a * 2) % 10;
else
return (a * 2 + 5) % 10;
}
//計算進位
int jin_wei(char* p)
{
char* level[] = {
"142857",
"285714",
"428571",
"571428",
"714285",
"857142"
};
char buf[7];
buf[6] = '\0';
strncpy(buf,p,6);
int i;
for(i=5; i>=0; i--){
int r = strcmp(level[i], buf);
if(r<0) return i+1;
while(r==0){
p += 6;
strncpy(buf,p,6);
r = strcmp(level[i], buf);
if(r<0) return i+1;
return i; //填空
}
}
return 0;
}
//多位數乘以7
void f(char* s)
{
int head = jin_wei(s);
if(head > 0) printf("%d", head);
char* p = s;
while(*p){
int a = (*p-'0');
int x = (ge_wei(a) + jin_wei(p+1)) % 10;
printf("%d",x);
p++;
}
printf("\n");
}
int main()
{
f("428571428571");
f("34553834937543");
return 0;
}