天天看點

HDU 1024 Max Sum Plus Plus 動态規劃Max Sum Plus Plus

題目連結:http://acm.hdu.edu.cn/showproblem.php?pid=1024

題目大意:n個數分成兩兩不相交的m段,求使這m段和的最大值。

解題思路:比較坑的點:n2 能過;long long逾時,int AC。 

dp[i][j]:= 在選擇第i個數的情況下前i個數分成j段的最大值

dp[i][j] = max(dp[i - 1][j] + a[i], max(dp[x][j - 1] -> dp[x][j - 1]) + a[i]) x < i

由于n<1000000,并且更新dp[i][j]時隻用到了j和j-1的部分,是以采用滾動數組記錄選擇第i個人時前i個人分成j段的和最大值;同時,max(dp[x][j - 1] -> dp[x][j - 1]) 可以在更新dp[i]的同時記錄,這樣就将時間複雜度降低到了n2 (是以為什麼n2能過???)

另外就是一些細節問題。

代碼:

1 const int inf = 0x3f3f3f3f;
 2 //dp[i][j]:= 在選擇第i個數的情況下前i個數分成j段的最大值
 3 //dp[i][j] = max(dp[i - 1][j] + a[i], max(dp[x][j - 1] -> dp[x][j - 1]) + a[i]) x < i
 4 const int maxn = 1e6 + 5;
 5 int dp[maxn];
 6 int pre[maxn];
 7 int a[maxn], n, m;
 8 
 9 int solve(){
10     memset(dp, 0, sizeof(dp));
11     memset(pre, 0, sizeof(pre));
12     int tmax = -inf;
13     for(int j = 1; j <= m; j++){
14         tmax = -inf;//記錄前i個人本次的最大值 
15         for(int i = j; i <= n; i++){
16             dp[i] = max(dp[i - 1] + a[i], pre[i - 1] + a[i]);//使用的是未更新的值,對應j-1的 
17             pre[i - 1] = tmax;    //再更新 
18             tmax = max(tmax, dp[i]);
19         }
20     }
21     return tmax; //不一定是dp[n],最後一個可能不用選 
22 }
23 
24 int main(){
25     while(scanf("%d %d", &m, &n) != EOF){
26         for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
27         int ans = solve();
28         printf("%d\n", ans);
29     }
30 }      

題目:

Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 30900    Accepted Submission(s): 10889

Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x≤ j y ≤ j x is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^  

Input Each test case will begin with two integers m and n, followed by n integers S 1, S 2, S 3 ... S n.

Process to the end of file.  

Output Output the maximal summation described above in one line.  

Sample Input 1 3 1 2 3 2 6 -1 4 -2 3 -2 3  

Sample Output 6 8 Hint Huge input, scanf and dynamic programming is recommended.  

Author JGShining(極光炫影)