天天看點

hdu 1024 Max Sum Plus Plus (動态規劃)

Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 37418    Accepted Submission(s): 13363

Problem Description

Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem. Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n). Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed). But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^

  Input

Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.

Process to the end of file.

  Output

Output the maximal summation described above in one line.

  Sample Input

1 3 1 2 3

2 6 -1 4 -2 3 -2 3

  Sample Output

6

8 Hint Huge input, scanf and dynamic programming is recommended.

C/C++:

1 #include <bits/stdc++.h>
 2 #define INF 0x3f3f3f3f
 3 using namespace std;
 4 
 5 const int MAX = 1e6 + 10;
 6 
 7 int m, n, pre[MAX], dp[MAX], num[MAX], ans, j;
 8 
 9 int main()
10 {
11     while (~scanf("%d%d", &m, &n))
12     {
13         memset(dp, 0, sizeof(dp));
14         memset(pre, 0, sizeof(pre));
15 
16         for (int i = 1; i <= n; ++ i) scanf("%d", &num[i]);
17         for (int i = 1; i <= m; ++ i)
18         {
19             ans = -INF;
20             for (j = i; j <= n; ++ j)
21             {
22                 dp[j] = max(dp[j - 1], pre[j - 1]) + num[j];
23                 pre[j - 1] = ans;
24                 ans = max(dp[j], ans);
25             }
26 //            pre[j - 1] = ans;
27         }
28 
29         printf("%d\n", ans);
30     }
31     return 0;
32 }