天天看点

【Hive】Hive 查询

文章目录

  • ​​一、环境准备​​
  • ​​二、Hive 查询​​
  • ​​1、普通查询​​
  • ​​2、别名查询​​
  • ​​3、限定查询​​
  • ​​4、多表联合查询​​
  • ​​5、多表插入​​
  • ​​6、多目录输出文件​​
环境准备
  • Hadoop 完全分布式(一主两从即可)
  • MySQL环境、Hive环境

一、环境准备

将 ​

​buyer_log​

​ 、​

​buyer_favorite​

​ 导入到 ​

​/data/hive-data​

​ 下:

【Hive】Hive 查询

创建卖家行为日志表,名为 ​

​buyer_log​

​,包含​

​ID(id)​

​、​

​用户ID(buyer_id)​

​、​

​时间(dt)​

​、​

​地点(ip)​

​、​

​操作类型(opt_type)​

​ 5 个字段,字符类型为 ​

​string​

​,按照 ​

​“\t”​

​ 分割符:

hive> create table buyer_log
    > (id string,buyer_id string,dt string,ip string,opt_type string)
    > row format delimited fields terminated by '\t'
    > stored as textfile;
OK
Time taken: 1.752      

创建买家收藏表,名为 ​

​buyer_favorite​

​,包含 ​

​用户ID(buyer_id)​

​、​

​商品ID(goods_id)​

​、​

​时间(dt)​

​ 3 个字段,字符类型为 ​

​string​

​,按照 ​

​“\t”​

​ 分割符:

hive> create table buyer_favorite
    > (buyer_id string,goods_id string,dt string)
    > row format delimited fields terminated by '\t'
    > stored as textfile;
OK
Time taken: 0.141      

将本地的 /data/hive-data 下的上述两个文件中的数据导入到刚刚创建的两张表中:

hive> load data local inpath '/../home/data/hive-data/buyer_log' into table buyer_log;
Loading data to table db.buyer_log
OK
Time taken: 3.36 seconds

hive> load data local inpath '/../home/data/hive-data/buyer_favorite' into table buyer_favorite;
Loading data to table db.buyer_favorite
OK
Time taken: 0.413      

​​返回顶部​​

二、Hive 查询

1、普通查询

查询 ​

​buyer_log​

​ 表中的全部字段,数据量大的时候,应当避免查询全部的数据。这里我们使用 ​

​limit​

​ 关键字进行限制查询前​

​10​

​条数据:

hive> select * from buyer_log limit 10;
OK
461  10181  2010-03-26 19:45:07  123.127.164.252  1
462  10262  2010-03-26 19:55:10  123.127.164.252  1
463  20001  2010-03-29 14:28:02  221.208.129.117  2
464  20001  2010-03-29 14:28:02  221.208.129.117  1
465  20002  2010-03-30 10:56:35  222.44.94.235  2
466  20002  2010-03-30 10:56:35  222.44.94.235  1
481  10181  2010-03-31 16:48:43  123.127.164.252  1
482  10181  2010-04-01 17:35:05  123.127.164.252  1
483  10181  2010-04-02 10:34:20  123.127.164.252  1
484  20001  2010-04-04 16:38:22  221.208.129.38  1
Time taken: 1.467 seconds, Fetched: 10 row(s)      

​​返回顶部​​

2、别名查询

查询表 ​

​buyer_log​

​ 中的 ​

​id​

​ 字段 和 ​

​ip​

​ 字段,当多表连接字段较多时,常常使用别名:

hive> select b.id,b.ip from buyer_log b limit 10;
OK
461  123.127.164.252
462  123.127.164.252
463  221.208.129.117
464  221.208.129.117
465  222.44.94.235
466  222.44.94.235
481  123.127.164.252
482  123.127.164.252
483  123.127.164.252
484  221.208.129.38
Time taken: 0.108 seconds, Fetched: 10 row(s)      

​​返回顶部​​

3、限定查询

查询表 ​

​buyer_log​

​ 中的 ​

​opt_type=1​

​ 的用户 ​

​ID(buyer_id)​

​:

hive> select buyer_id from buyer_log where opt_type=1 limit 10;
OK
10181
10262
20001
20002
10181
10181
10181
20001
10181
20021
Time taken: 0.361 seconds, Fetched: 10 row(s)      

​​返回顶部​​

4、多表联合查询

两表或多表进行查询的时候,如通过 ​

​用户ID(buyer_id)​

​连接表 ​

​buyer_log​

​ 、​

​buyer_favorite​

​,查询表 ​

​buyer_log​

​ 的 ​

​dt​

​ 字段和表 ​

​buyer_favorite​

​ 的 ​

​goods_id​

​ 字段,多表联合查询可以按需求查询多个表中不同字段:

hive> select l.dt,f.goods_id from buyer_log l,buyer_favorite f
    > where l.buyer_id = f.buyer_id 
    > limit 10;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = root_20220312204110_aa886926-12e1-4fc7-a0b7-2d21e4323941
Total jobs = 1
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/src/hive/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/src/hadoop/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
2022-03-12 20:41:29    Starting to launch local task to process map join;    maximum memory = 477626368
2022-03-12 20:41:31    Dump the side-table for tag: 1 with group count: 682 into file: file:/usr/local/src/hive/tmp/ade490ef-9595-4235-9a9c-f58620ae753f/hive_2022-03-12_20-41-10_247_5739433956695466542-1/-local-10004/HashTable-Stage-3/MapJoin-mapfile01--.hashtable
2022-03-12 20:41:31    Uploaded 1 File to: file:/usr/local/src/hive/tmp/ade490ef-9595-4235-9a9c-f58620ae753f/hive_2022-03-12_20-41-10_247_5739433956695466542-1/-local-10004/HashTable-Stage-3/MapJoin-mapfile01--.hashtable (51658 bytes)
2022-03-12 20:41:31    End of local task; Time Taken: 1.91 sec.
Execution completed successfully
MapredLocal task succeeded
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1647086333827_0001, Tracking URL = http://server:8088/proxy/application_1647086333827_0001/
Kill Command = /usr/local/src/hadoop/bin/hadoop job  -kill job_1647086333827_0001
Hadoop job information for Stage-3: number of mappers: 1; number of reducers: 0
2022-03-12 20:42:57,007 Stage-3 map = 0%,  reduce = 0%
2022-03-12 20:43:26,906 Stage-3 map = 100%,  reduce = 0%, Cumulative CPU 3.96 sec
MapReduce Total cumulative CPU time: 3 seconds 960 msec
Ended Job = job_1647086333827_0001
MapReduce Jobs Launched: 
Stage-Stage-3: Map: 1   Cumulative CPU: 3.96 sec   HDFS Read: 137752 HDFS Write: 487 SUCCESS
Total MapReduce CPU Time Spent: 3 seconds 960 msec
OK
2010-03-26 19:45:07 1000481
2010-03-26 19:45:07 1003185
2010-03-26 19:45:07 1002643
2010-03-26 19:45:07 1002994
2010-03-26 19:55:10 1003326
2010-03-29 14:28:02 1001597
2010-03-29 14:28:02 1001560
2010-03-29 14:28:02 1001650
2010-03-29 14:28:02 1002410
2010-03-29 14:28:02 1002989
Time taken: 138.793 seconds, Fetched: 10 row(s)      

​​返回顶部​​

5、多表插入

多表插入指的是在同一条语句中,把读取的同一份数据插入到不同的表中,只需要扫描一遍数据即可完成所有表的插入操作,效率很高。我们使用买家行为日志 buyer_log 表作为插入表,创建 buyer_log1 和 buyer_log2 两表作为被插入表:

hive> create table buyer_log1 like buyer_log;
OK
Time taken: 1.199 seconds
hive> create table buyer_log2 like buyer_log;
OK
Time taken: 0.095      

将 ​

​buyer_log​

​ 中的数据插入到 ​

​buyer_log1​

​ 、​

​buyer_log2​

​ 中:

hive> from buyer_log
    > insert overwrite table buyer_log1 select *
    > insert overwrite table buyer_log2 select *;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = root_20220312205124_ae99b1d8-9ada-4358-9b64-9c3d61c6de76
Total jobs = 5
Launching Job 1 out of 5
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1647086333827_0002, Tracking URL = http://server:8088/proxy/application_1647086333827_0002/
Kill Command = /usr/local/src/hadoop/bin/hadoop job  -kill job_1647086333827_0002
Hadoop job information for Stage-2: number of mappers: 1; number of reducers: 0
2022-03-12 20:51:55,535 Stage-2 map = 0%,  reduce = 0%
2022-03-12 20:52:14,808 Stage-2 map = 100%,  reduce = 0%, Cumulative CPU 2.05 sec
MapReduce Total cumulative CPU time: 2 seconds 50 msec
Ended Job = job_1647086333827_0002
Stage-5 is selected by condition resolver.
Stage-4 is filtered out by condition resolver.
Stage-6 is filtered out by condition resolver.
Stage-11 is selected by condition resolver.
Stage-10 is filtered out by condition resolver.
Stage-12 is filtered out by condition resolver.
Moving data to directory hdfs://192.168.64.183:9000/user/hive/warehouse/db.db/buyer_log1/.hive-staging_hive_2022-03-12_20-51-24_797_2412140504440982474-1/-ext-10000
Moving data to directory hdfs://192.168.64.183:9000/user/hive/warehouse/db.db/buyer_log2/.hive-staging_hive_2022-03-12_20-51-24_797_2412140504440982474-1/-ext-10002
Loading data to table db.buyer_log1
Loading data to table db.buyer_log2
MapReduce Jobs Launched: 
Stage-Stage-2: Map: 1   Cumulative CPU: 2.05 sec   HDFS Read: 14432909 HDFS Write: 28293834 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 50 msec
OK
Time taken: 51.7      

​​返回顶部​​

6、多目录输出文件

将统一文件输出到本地不同文件中,提高效率,可以避免重复操作 ​

​from​

​,将买家行为日志 ​

​buyer_log​

​ 表导入到本地 ​

​/data/hive-data/out1​

​ 、​

​/data/hive-data/out2​

​ 中:

[root@server hive-data]# mkdir ./out1   //首先创建两个文件夹
[root@server hive-data]# mkdir ./out2
[root@server hive-data]# ll
总用量 23084
-rw-r--r--. 1 root root   102889 3月   6 10:52 buyer_favorite
-rw-r--r--. 1 root root 14427403 3月   6 10:52 buyer_log
-rw-r--r--. 1 root root     2164 3月   6 10:52 cat_group
-rw-r--r--. 1 root root   208799 3月   6 10:52 goods
-rw-r--r--. 1 root root    82421 3月   6 10:52 goods_visit
-rw-r--r--. 1 root root  8796085 3月   6 10:52 order_items
drwxr-xr-x. 2 root root       43 3月   6 11:50 out
drwxr-xr-x. 2 root root        6 3月  12 20:57 out1
drwxr-xr-x. 2 root root        6 3月  12 20:57 out2
-rw-r--r--. 1 root root      287 3月   6 10:52 sydata.txt      
hive> from buyer_log
    > insert overwrite local directory '/home/data/hive-data/out1' select *
    > insert overwrite local directory '/home/data/hive-data/out2' select *;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = root_20220312210028_a1b22b5b-255a-44b0-9b87-8c43ed291451
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1647086333827_0003, Tracking URL = http://server:8088/proxy/application_1647086333827_0003/
Kill Command = /usr/local/src/hadoop/bin/hadoop job  -kill job_1647086333827_0003
Hadoop job information for Stage-2: number of mappers: 1; number of reducers: 0
2022-03-12 21:00:48,788 Stage-2 map = 0%,  reduce = 0%
2022-03-12 21:00:55,289 Stage-2 map = 100%,  reduce = 0%, Cumulative CPU 2.25 sec
MapReduce Total cumulative CPU time: 2 seconds 250 msec
Ended Job = job_1647086333827_0003
Moving data to local directory /home/data/hive-data/out1
Moving data to local directory /home/data/hive-data/out2
MapReduce Jobs Launched: 
Stage-Stage-2: Map: 1   Cumulative CPU: 2.25 sec   HDFS Read: 14432070 HDFS Write: 28293676 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 250 msec
OK
Time taken: 29.427      
[root@server hive-data]# ll ./out1
总用量 13816
-rw-r--r--. 1 root root 14146838 3月  12 21:00 000000_0
[root@server hive-data]# ll ./out2
总用量 13816
-rw-r--r--. 1 root root 14146838 3月  12 21:00 000000_0      

继续阅读