转自:https://www.tensorflow.org/guide/migrate
目录
Automatic conversion script
Top-level behavioral changes
Make the code 2.0-native
1. Replace v1.Session.run calls
2. Use Python objects to track variables and losses
3. Upgrade your training loops
4. Upgrade your data input pipelines
Converting models
Setup
A note on Slim & contrib.layers
Training
Using Datasets
Write your own loop
Customize the training step
New-style metrics and losses
Keras metric names
Keras optimizers
TensorBoard
Saving & Loading
Checkpoint compatibility
Saved models compatibility
A Graph.pb or Graph.pbtxt
Estimators
Training with Estimators
Using a Keras model definition
Using a custom model_fn
Premade Estimators
TensorShape
Other Changes
Conclusions
This doc for users of low level TensorFlow APIs. If you are using the high level APIs (
tf.keras
) there may be little or no action you need to take to make your code fully TensorFlow 2.0 compatible:
- Check your optimizer's default learning rate.
- Note that the "name" that metrics are logged to may have changed.
It is still possible to run 1.X code, unmodified (except for contrib), in TensorFlow 2.0:
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
However, this does not let you take advantage of many of the improvements made in TensorFlow 2.0. This guide will help you upgrade your code, making it simpler, more performant, and easier to maintain.
Automatic conversion script
The first step, before attempting to implement the changes described in this doc, is to try running the upgrade script.
This will do an initial pass at upgrading your code to TensorFlow 2.0. But it can't make your code idiomatic to 2.0. Your code may still make use of
tf.compat.v1
endpoints to access placeholders, sessions, collections, and other 1.x-style functionality.
Top-level behavioral changes
If your code works in TensorFlow 2.0 using
tf.compat.v1.disable_v2_behavior()
, there are still global behavioral changes you may need to address. The major changes are:
- Eager execution,
: Any code that implicitly uses av1.enable_eager_execution()
will fail. Be sure to wrap this code in atf.Graph
context.with tf.Graph().as_default()
- Resource variables,
: Some code may depends on non-deterministic behaviors enabled by TF reference variables. Resource variables are locked while being written to, and so provide more intuitive consistency guarantees.v1.enable_resource_variables()
- This may change behavior in edge cases.
- This may create extra copies and can have higher memory usage.
- This can be disabled by passing
to theuse_resource=False
constructor.tf.Variable
- Tensor shapes,
: TF 2.0 simplifies the behavior of tensor shapes. Instead ofv1.enable_v2_tensorshape()
you can sayt.shape[0].value
. These changes should be small, and it makes sense to fix them right away. See TensorShape for examples.t.shape[0]
- Control flow,
: The TF 2.0 control flow implementation has been simplified, and so produces different graph representations. Please file bugs for any issues.v1.enable_control_flow_v2()
Make the code 2.0-native
This guide will walk through several examples of converting TensorFlow 1.x code to TensorFlow 2.0. These changes will let your code take advantage of performance optimizations and simplified API calls.
In each case, the pattern is:
1. Replace v1.Session.run
calls
v1.Session.run
Every
v1.Session.run
call should be replaced by a Python function.
- The
andfeed_dict
s become function arguments.v1.placeholder
- The
become the function's return value.fetches
- During conversion eager execution allows easy debugging with standard Python tools like
.pdb
After that add a
tf.function
decorator to make it run efficiently in graph. See the Autograph Guide for more on how this works.
Note that:
- Unlike
av1.Session.run
has a fixed return signature, and always returns all outputs. If this causes performance problems, create two separate functions.tf.function
- There is no need for a
or similar operations: Atf.control_dependencies
behaves as if it were run in the order written.tf.function
assignments andtf.Variable
s, for example, are executed automatically.tf.assert
2. Use Python objects to track variables and losses
All name-based variable tracking is strongly discouraged in TF 2.0. Use Python objects to to track variables.
Use
tf.Variable
instead of
v1.get_variable
.
Every
v1.variable_scope
should be converted to a Python object. Typically this will be one of:
-
tf.keras.layers.Layer
-
tf.keras.Model
-
tf.Module
If you need to aggregate lists of variables (like
tf.Graph.get_collection(tf.GraphKeys.VARIABLES)
), use the
.variables
and
.trainable_variables
attributes of the
Layer
and
Model
objects.
These
Layer
and
Model
classes implement several other properties that remove the need for global collections. Their
.losses
property can be a replacement for using the
tf.GraphKeys.LOSSES
collection.
See the keras guides for details.
Warning: Many
tf.compat.v1
symbols use the global collections implicitly.
3. Upgrade your training loops
Use the highest level API that works for your use case. Prefer
tf.keras.Model.fit
over building your own training loops.
These high level functions manage a lot of the low-level details that might be easy to miss if you write your own training loop. For example, they automatically collect the regularization losses, and set the
training=True
argument when calling the model.
4. Upgrade your data input pipelines
Use
tf.data
datasets for data input. These objects are efficient, expressive, and integrate well with tensorflow.
They can be passed directly to the
tf.keras.Model.fit
method.
model.fit(dataset, epochs=5)
They can be iterated over directly standard Python:
for example_batch, label_batch in dataset:
break
5. Migrate off
compat.v1
symbols
The
tf.compat.v1
module contains the complete TensorFlow 1.x API, with its original semantics.
The TF2 upgrade script will convert symbols to their 2.0 equivalents if such a conversion is safe, i.e., if it can determine that the behavior of the 2.0 version is exactly equivalent (for instance, it will rename
v1.arg_max
to
tf.argmax
, since those are the same function).
After the upgrade script is done with a piece of code, it is likely there are many mentions of
compat.v1
. It is worth going through the code and converting these manually to the 2.0 equivalent (it should be mentioned in the log if there is one).
Converting models
Setup
import tensorflow as tf
import tensorflow_datasets as tfds
Low-level variables & operator execution
Examples of low-level API use include:
- using variable scopes to control reuse
- creating variables with
.v1.get_variable
- accessing collections explicitly
- accessing collections implicitly with methods like :
-
v1.global_variables
-
v1.losses.get_regularization_loss
-
- using
to set up graph inputsv1.placeholder
- executing graphs with
Session.run
- initializing variables manually
Before converting
Here is what these patterns may look like in code using TensorFlow 1.x.
in_a = tf.placeholder(dtype=tf.float32, shape=(2))
in_b = tf.placeholder(dtype=tf.float32, shape=(2))
def forward(x):
with tf.variable_scope("matmul", reuse=tf.AUTO_REUSE):
W = tf.get_variable("W", initializer=tf.ones(shape=(2,2)),
regularizer=tf.contrib.layers.l2_regularizer(0.04))
b = tf.get_variable("b", initializer=tf.zeros(shape=(2)))
return W * x + b
out_a = forward(in_a)
out_b = forward(in_b)
reg_loss=tf.losses.get_regularization_loss(scope="matmul")
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
outs = sess.run([out_a, out_b, reg_loss],
feed_dict={in_a: [1, 0], in_b: [0, 1]})
After converting
In the converted code:
- The variables are local Python objects.
- The
function still defines the calculation.forward
- The
call is replaced with a call toSession.run
forward
- The optional
decorator can be added for performance.tf.function
- The regularizations are calculated manually, without referring to any global collection.
- No sessions or placeholders.
W = tf.Variable(tf.ones(shape=(2,2)), name="W")
b = tf.Variable(tf.zeros(shape=(2)), name="b")
@tf.function
def forward(x):
return W * x + b
out_a = forward([1,0])
print(out_a)
tf.Tensor( [[1. 0.] [1. 0.]], shape=(2, 2), dtype=float32)
out_b = forward([0,1])
regularizer = tf.keras.regularizers.l2(0.04)
reg_loss=regularizer(W)
Models based on
tf.layers
The
v1.layers
module is used to contain layer-functions that relied on
v1.variable_scope
to define and reuse variables.
Before converting
def model(x, training, scope='model'):
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
x = tf.layers.conv2d(x, 32, 3, activation=tf.nn.relu,
kernel_regularizer=tf.contrib.layers.l2_regularizer(0.04))
x = tf.layers.max_pooling2d(x, (2, 2), 1)
x = tf.layers.flatten(x)
x = tf.layers.dropout(x, 0.1, training=training)
x = tf.layers.dense(x, 64, activation=tf.nn.relu)
x = tf.layers.batch_normalization(x, training=training)
x = tf.layers.dense(x, 10)
return x
train_out = model(train_data, training=True)
test_out = model(test_data, training=False)
After converting
- The simple stack of layers fits neatly into
. (For more complex models see custom layers and models, and the functional API.)tf.keras.Sequential
- The model tracks the variables, and regularization losses.
- The conversion was one-to-one because there is a direct mapping from
tov1.layers
.tf.keras.layers
Most arguments stayed the same. But notice the differences:
- The
argument is passed to each layer by the model when it runs.training
- The first argument to the original
function (the inputmodel
) is gone. This is because object layers separate building the model from calling the model.x
Also note that:
- If you were using regularizers of initializers from
, these have more argument changes than others.tf.contrib
- The code no longer writes to collections, so functions like
will no longer return these values, potentially breaking your training loops.v1.losses.get_regularization_loss
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, 3, activation='relu',
kernel_regularizer=tf.keras.regularizers.l2(0.04),
input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dropout(0.1),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dense(10)
])
train_data = tf.ones(shape=(1, 28, 28, 1))
test_data = tf.ones(shape=(1, 28, 28, 1))
train_out = model(train_data, training=True)
print(train_out)
tf.Tensor([[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]], shape=(1, 10), dtype=float32)
test_out = model(test_data, training=False)
print(test_out)
tf.Tensor( [[ 0.24344693 -0.07415813 0.13263617 0.4303674 -0.1368679 -0.5740402 0.29624057 -0.03381582 -0.23390904 0.13963135]], shape=(1, 10), dtype=float32)
# Here are all the trainable variables.
len(model.trainable_variables)
8
# Here is the regularization loss.
model.losses
[<tf.Tensor: shape=(), dtype=float32, numpy=0.083209045>]
Mixed variables &
v1.layers
Existing code often mixes lower-level TF 1.x variables and operations with higher-level
v1.layers
.
Before converting
def model(x, training, scope='model'):
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
W = tf.get_variable(
"W", dtype=tf.float32,
initializer=tf.ones(shape=x.shape),
regularizer=tf.contrib.layers.l2_regularizer(0.04),
trainable=True)
if training:
x = x + W
else:
x = x + W * 0.5
x = tf.layers.conv2d(x, 32, 3, activation=tf.nn.relu)
x = tf.layers.max_pooling2d(x, (2, 2), 1)
x = tf.layers.flatten(x)
return x
train_out = model(train_data, training=True)
test_out = model(test_data, training=False)
After converting
To convert this code, follow the pattern of mapping layers to layers as in the previous example.
A
v1.variable_scope
is effectively a layer of its own. So rewrite it as a
tf.keras.layers.Layer
. See the guide for details.
The general pattern is:
- Collect layer parameters in
.__init__
- Build the variables in
.build
- Execute the calculations in
, and return the result.call
The
v1.variable_scope
is essentially a layer of its own. So rewrite it as a
tf.keras.layers.Layer
. See the guide for details.
# Create a custom layer for part of the model
class CustomLayer(tf.keras.layers.Layer):
def __init__(self, *args, **kwargs):
super(CustomLayer, self).__init__(*args, **kwargs)
def build(self, input_shape):
self.w = self.add_weight(
shape=input_shape[1:],
dtype=tf.float32,
initializer=tf.keras.initializers.ones(),
regularizer=tf.keras.regularizers.l2(0.02),
trainable=True)
# Call method will sometimes get used in graph mode,
# training will get turned into a tensor
@tf.function
def call(self, inputs, training=None):
if training:
return inputs + self.w
else:
return inputs + self.w * 0.5
custom_layer = CustomLayer()
print(custom_layer([1]).numpy())
print(custom_layer([1], training=True).numpy())
[1.5] [2.]
train_data = tf.ones(shape=(1, 28, 28, 1))
test_data = tf.ones(shape=(1, 28, 28, 1))
# Build the model including the custom layer
model = tf.keras.Sequential([
CustomLayer(input_shape=(28, 28, 1)),
tf.keras.layers.Conv2D(32, 3, activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Flatten(),
])
train_out = model(train_data, training=True)
test_out = model(test_data, training=False)
Some things to note:
- Subclassed Keras models & layers need to run in both v1 graphs (no automatic control dependencies) and in eager mode
- Wrap the
in acall()
to get autograph and automatic control dependenciestf.function()
- Wrap the
- Don't forget to accept a
argument totraining
.call
- Sometimes it is a
tf.Tensor
- Sometimes it is a Python boolean.
- Sometimes it is a
- Create model variables in constructor or
usingModel.build
.self.add_weight()
- In
you have access to the input shape, so can create weights with matching shape.Model.build
- Using
allows Keras to track variables and regularization losses.tf.keras.layers.Layer.add_weight
- In
- Don't keep
in your objects.tf.Tensors
- They might get created either in a
or in the eager context, and these tensors behave differently.tf.function
- Use
s for state, they are always usable from both contextstf.Variable
-
are only for intermediate values.tf.Tensors
- They might get created either in a
A note on Slim & contrib.layers
A large amount of older TensorFlow 1.x code uses the Slim library, which was packaged with TensorFlow 1.x as
tf.contrib.layers
. As a
contrib
module, this is no longer available in TensorFlow 2.0, even in
tf.compat.v1
. Converting code using Slim to TF 2.0 is more involved than converting repositories that use
v1.layers
. In fact, it may make sense to convert your Slim code to
v1.layers
first, then convert to Keras.
- Remove
, all args need to be explicitarg_scopes
- If you use them, split
andnormalizer_fn
into their own layersactivation_fn
- Separable conv layers map to one or more different Keras layers (depthwise, pointwise, and separable Keras layers)
- Slim and
have different arg names & default valuesv1.layers
- Some args have different scales
- If you use Slim pre-trained models, try out Keras's pre-traimed models from
or TF Hub's TF2 SavedModels exported from the original Slim code.tf.keras.applications
Some
tf.contrib
layers might not have been moved to core TensorFlow but have instead been moved to the TF add-ons package.
Training
There are many ways to feed data to a
tf.keras
model. They will accept Python generators and Numpy arrays as input.
The recommended way to feed data to a model is to use the
tf.data
package, which contains a collection of high performance classes for manipulating data.
If you are still using
tf.queue
, these are now only supported as data-structures, not as input pipelines.
Using Datasets
The TensorFlow Datasets package (
tfds
) contains utilities for loading predefined datasets as
tf.data.Dataset
objects.
For this example, load the MNISTdataset, using
tfds
:
datasets, info = tfds.load(name='mnist', with_info=True, as_supervised=True)
mnist_train, mnist_test = datasets['train'], datasets['test']
Downloading and preparing dataset mnist/3.0.0 (download: 11.06 MiB, generated: Unknown size, total: 11.06 MiB) to /home/kbuilder/tensorflow_datasets/mnist/3.0.0... WARNING:absl:Dataset mnist is hosted on GCS. It will automatically be downloaded to your local data directory. If you'd instead prefer to read directly from our public GCS bucket (recommended if you're running on GCP), you can instead set data_dir=gs://tfds-data/datasets. HBox(children=(FloatProgress(value=0.0, description='Dl Completed...', max=4.0, style=ProgressStyle(descriptio… Dataset mnist downloaded and prepared to /home/kbuilder/tensorflow_datasets/mnist/3.0.0. Subsequent calls will reuse this data.
Then prepare the data for training:
- Re-scale each image.
- Shuffle the order of the examples.
- Collect batches of images and labels.
BUFFER_SIZE = 10 # Use a much larger value for real code.
BATCH_SIZE = 64
NUM_EPOCHS = 5
def scale(image, label):
image = tf.cast(image, tf.float32)
image /= 255
return image, label
To keep the example short, trim the dataset to only return 5 batches:
train_data = mnist_train.map(scale).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
test_data = mnist_test.map(scale).batch(BATCH_SIZE)
STEPS_PER_EPOCH = 5
train_data = train_data.take(STEPS_PER_EPOCH)
test_data = test_data.take(STEPS_PER_EPOCH)
image_batch, label_batch = next(iter(train_data))
Use Keras training loops
If you don't need low level control of your training process, using Keras's built-in
fit
,
evaluate
, and
predict
methods is recommended. These methods provide a uniform interface to train the model regardless of the implementation (sequential, functional, or sub-classed).
The advantages of these methods include:
- They accept Numpy arrays, Python generators and,
tf.data.Datasets
- They apply regularization, and activation losses automatically.
- They support
for multi-device training.tf.distribute
- They support arbitrary callables as losses and metrics.
- They support callbacks like
, and custom callbacks.tf.keras.callbacks.TensorBoard
- They are performant, automatically using TensorFlow graphs.
Here is an example of training a model using a
Dataset
. (For details on how this works see tutorials.)
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, 3, activation='relu',
kernel_regularizer=tf.keras.regularizers.l2(0.02),
input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dropout(0.1),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dense(10)
])
# Model is the full model w/o custom layers
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.fit(train_data, epochs=NUM_EPOCHS)
loss, acc = model.evaluate(test_data)
print("Loss {}, Accuracy {}".format(loss, acc))
Epoch 1/5
5/5 [==============================] - 1s 129ms/step - loss: 1.6570 - accuracy: 0.4719
Epoch 2/5
5/5 [==============================] - 0s 21ms/step - loss: 0.5582 - accuracy: 0.8906
Epoch 3/5
5/5 [==============================] - 0s 21ms/step - loss: 0.3457 - accuracy: 0.9531
Epoch 4/5
5/5 [==============================] - 0s 19ms/step - loss: 0.2499 - accuracy: 0.9625
Epoch 5/5
5/5 [==============================] - 0s 19ms/step - loss: 0.1934 - accuracy: 0.9844
5/Unknown - 0s 23ms/step - loss: 1.5631 - accuracy: 0.8156Loss 1.563053011894226, Accuracy 0.815625011920929
Write your own loop
If the Keras model's training step works for you, but you need more control outside that step, consider using the
tf.keras.Model.train_on_batch
method, in your own data-iteration loop.
Remember: Many things can be implemented as a
tf.keras.callbacks.Callback
.
This method has many of the advantages of the methods mentioned in the previous section, but gives the user control of the outer loop.
You can also use
tf.keras.Model.test_on_batch
or
tf.keras.Model.evaluate
to check performance during training.
Note:
train_on_batch
and
test_on_batch
, by default return the loss and metrics for the single batch. If you pass
reset_metrics=False
they return accumulated metrics and you must remember to appropriately reset the metric accumulators. Also remember that some metrics like
AUC
require
reset_metrics=False
to be calculated correctly.
To continue training the above model:
# Model is the full model w/o custom layers
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
for epoch in range(NUM_EPOCHS):
#Reset the metric accumulators
model.reset_metrics()
for image_batch, label_batch in train_data:
result = model.train_on_batch(image_batch, label_batch)
metrics_names = model.metrics_names
print("train: ",
"{}: {:.3f}".format(metrics_names[0], result[0]),
"{}: {:.3f}".format(metrics_names[1], result[1]))
for image_batch, label_batch in test_data:
result = model.test_on_batch(image_batch, label_batch,
# return accumulated metrics
reset_metrics=False)
metrics_names = model.metrics_names
print("\neval: ",
"{}: {:.3f}".format(metrics_names[0], result[0]),
"{}: {:.3f}".format(metrics_names[1], result[1]))
train: loss: 0.150 accuracy: 1.000
train: loss: 0.198 accuracy: 0.938
train: loss: 0.207 accuracy: 0.984
train: loss: 0.216 accuracy: 0.969
train: loss: 0.153 accuracy: 0.984
eval: loss: 1.589 accuracy: 0.797
train: loss: 0.093 accuracy: 1.000
train: loss: 0.111 accuracy: 1.000
train: loss: 0.109 accuracy: 0.984
train: loss: 0.124 accuracy: 1.000
train: loss: 0.109 accuracy: 1.000
eval: loss: 1.574 accuracy: 0.834
train: loss: 0.074 accuracy: 1.000
train: loss: 0.078 accuracy: 1.000
train: loss: 0.078 accuracy: 1.000
train: loss: 0.079 accuracy: 1.000
train: loss: 0.066 accuracy: 1.000
eval: loss: 1.541 accuracy: 0.856
train: loss: 0.058 accuracy: 1.000
train: loss: 0.062 accuracy: 1.000
train: loss: 0.057 accuracy: 1.000
train: loss: 0.061 accuracy: 1.000
train: loss: 0.054 accuracy: 1.000
eval: loss: 1.506 accuracy: 0.866
train: loss: 0.051 accuracy: 1.000
train: loss: 0.050 accuracy: 1.000
train: loss: 0.046 accuracy: 1.000
train: loss: 0.049 accuracy: 1.000
train: loss: 0.051 accuracy: 1.000
eval: loss: 1.470 accuracy: 0.866
Customize the training step
If you need more flexibility and control, you can have it by implementing your own training loop. There are three steps:
- Iterate over a Python generator or
to get batches of examples.tf.data.Dataset
- Use
to collect gradients.tf.GradientTape
- Use one of the
to apply weight updates to the model's variables.tf.keras.optimizers
Remember:
- Always include a
argument on thetraining
method of subclassed layers and models.call
- Make sure to call the model with the
argument set correctly.training
- Depending on usage, model variables may not exist until the model is run on a batch of data.
- You need to manually handle things like regularization losses for the model.
Note the simplifications relative to v1:
- There is no need to run variable initializers. Variables are initialized on creation.
- There is no need to add manual control dependencies. Even in
operations act as in eager mode.tf.function
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, 3, activation='relu',
kernel_regularizer=tf.keras.regularizers.l2(0.02),
input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dropout(0.1),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dense(10)
])
optimizer = tf.keras.optimizers.Adam(0.001)
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
@tf.function
def train_step(inputs, labels):
with tf.GradientTape() as tape:
predictions = model(inputs, training=True)
regularization_loss=tf.math.add_n(model.losses)
pred_loss=loss_fn(labels, predictions)
total_loss=pred_loss + regularization_loss
gradients = tape.gradient(total_loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
for epoch in range(NUM_EPOCHS):
for inputs, labels in train_data:
train_step(inputs, labels)
print("Finished epoch", epoch)
Finished epoch 0
Finished epoch 1
Finished epoch 2
Finished epoch 3
Finished epoch 4
New-style metrics and losses
In TensorFlow 2.0, metrics and losses are objects. These work both eagerly and in
tf.function
s.
A loss object is callable, and expects the (y_true, y_pred) as arguments:
cce = tf.keras.losses.CategoricalCrossentropy(from_logits=True)
cce([[1, 0]], [[-1.0,3.0]]).numpy()
4.01815
A metric object has the following methods:
-
— add new observationsMetric.update_state()
-
—get the current result of the metric, given the observed valuesMetric.result()
-
— clear all observations.Metric.reset_states()
The object itself is callable. Calling updates the state with new observations, as with
update_state
, and returns the new result of the metric.
You don't have to manually initialize a metric's variables, and because TensorFlow 2.0 has automatic control dependencies, you don't need to worry about those either.
The code below uses a metric to keep track of the mean loss observed within a custom training loop.
# Create the metrics
loss_metric = tf.keras.metrics.Mean(name='train_loss')
accuracy_metric = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
@tf.function
def train_step(inputs, labels):
with tf.GradientTape() as tape:
predictions = model(inputs, training=True)
regularization_loss=tf.math.add_n(model.losses)
pred_loss=loss_fn(labels, predictions)
total_loss=pred_loss + regularization_loss
gradients = tape.gradient(total_loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
# Update the metrics
loss_metric.update_state(total_loss)
accuracy_metric.update_state(labels, predictions)
for epoch in range(NUM_EPOCHS):
# Reset the metrics
loss_metric.reset_states()
accuracy_metric.reset_states()
for inputs, labels in train_data:
train_step(inputs, labels)
# Get the metric results
mean_loss=loss_metric.result()
mean_accuracy = accuracy_metric.result()
print('Epoch: ', epoch)
print(' loss: {:.3f}'.format(mean_loss))
print(' accuracy: {:.3f}'.format(mean_accuracy))
Epoch: 0
loss: 0.125
accuracy: 0.997
Epoch: 1
loss: 0.106
accuracy: 1.000
Epoch: 2
loss: 0.091
accuracy: 1.000
Epoch: 3
loss: 0.085
accuracy: 0.997
Epoch: 4
loss: 0.072
accuracy: 1.000
Keras metric names
In TensorFlow 2.0 keras models are more consistent about handling metric names.
Now when you pass a string in the list of metrics, that exact string is used as the metric's
name
. These names are visible in the history object returned by
model.fit
, and in the logs passed to
keras.callbacks
. is set to the string you passed in the metric list.
model.compile(
optimizer = tf.keras.optimizers.Adam(0.001),
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics = ['acc', 'accuracy', tf.keras.metrics.SparseCategoricalAccuracy(name="my_accuracy")])
history = model.fit(train_data)
5/5 [==============================] - 1s 110ms/step - loss: 0.0832 - acc: 1.0000 - accuracy: 1.0000 - my_accuracy: 1.0000
history.history.keys()
dict_keys(['loss', 'acc', 'accuracy', 'my_accuracy'])
This differs from previous versions where passing
metrics=["accuracy"]
would result in
dict_keys(['loss', 'acc'])
Keras optimizers
The optimizers in
v1.train
, like
v1.train.AdamOptimizer
and
v1.train.GradientDescentOptimizer
, have equivalents in
tf.keras.optimizers
.
Convert
v1.train
to
keras.optimizers
Here are things to keep in mind when converting your optimizers:
- Upgrading your optimizers may make old checkpoints incompatible.
- All epsilons now default to
instead of1e-7
(which is negligible in most use cases).1e-8
-
can be directly replaced byv1.train.GradientDescentOptimizer
.tf.keras.optimizers.SGD
-
can be directly replaced by thev1.train.MomentumOptimizer
optimizer using the momentum argument:SGD
.tf.keras.optimizers.SGD(..., momentum=...)
-
can be converted to usev1.train.AdamOptimizer
. Thetf.keras.optimizers.Adam
andbeta1
arguments have been renamed tobeta2
andbeta_1
.beta_2
-
can be converted tov1.train.RMSPropOptimizer
. Thetf.keras.optimizers.RMSprop
argument has been renamed todecay
.rho
-
can be converted directly tov1.train.AdadeltaOptimizer
.tf.keras.optimizers.Adadelta
-
can be converted directly totf.train.AdagradOptimizer
.tf.keras.optimizers.Adagrad
-
can be converted directly totf.train.FtrlOptimizer
. Thetf.keras.optimizers.Ftrl
andaccum_name
arguments have been removed.linear_name
- The
andtf.contrib.AdamaxOptimizer
, can be converted directly totf.contrib.NadamOptimizer
andtf.keras.optimizers.Adamax
. Thetf.keras.optimizers.Nadam
, andbeta1
arguments have been renamed tobeta2
andbeta_1
.beta_2
New defaults for some
tf.keras.optimizers
Warning: If you see a change in convergence behavior for your models, check the default learning rates.
There are no changes for
optimizers.SGD
,
optimizers.Adam
, or
optimizers.RMSprop
.
The following default learning rates have changed:
-
from 0.01 to 0.001optimizers.Adagrad
-
from 1.0 to 0.001optimizers.Adadelta
-
from 0.002 to 0.001optimizers.Adamax
-
from 0.002 to 0.001optimizers.Nadam
TensorBoard
TensorFlow 2 includes significant changes to the
tf.summary
API used to write summary data for visualization in TensorBoard. For a general introduction to the new
tf.summary
, there are several tutorials available that use the TF 2 API. This includes a TensorBoard TF 2 Migration Guide
Saving & Loading
Checkpoint compatibility
TensorFlow 2.0 uses object-based checkpoints.
Old-style name-based checkpoints can still be loaded, if you're careful. The code conversion process may result in variable name changes, but there are workarounds.
The simplest approach it to line up the names of the new model with the names in the checkpoint:
- Variables still all have a
argument you can set.name
- Keras models also take a
argument as which they set as the prefix for their variables.name
- The
function can be used to set variable name prefixes. This is very different fromv1.name_scope
. It only affects names, and doesn't track variables & reuse.tf.variable_scope
If that does not work for your use-case, try the
v1.train.init_from_checkpoint
function. It takes an
assignment_map
argument, which specifies the mapping from old names to new names.
Note: Unlike object based checkpoints, which can defer loading, name-based checkpoints require that all variables be built when the function is called. Some models defer building variables until you call
build
or run the model on a batch of data.
The TensorFlow Estimator repository includes a conversion tool to upgrade the checkpoints for premade estimators from TensorFlow 1.X to 2.0. It may serve as an example of how to build a tool fr a similar use-case.
Saved models compatibility
There are no significant compatibility concerns for saved models.
- TensorFlow 1.x saved_models work in TensorFlow 2.x.
- TensorFlow 2.x saved_models work in TensorFlow 1.x—if all the ops are supported.
A Graph.pb or Graph.pbtxt
There is no straightforward way to upgrade a raw
Graph.pb
file to TensorFlow 2.0. Your best bet is to upgrade the code that generated the file.
But, if you have a "Frozen graph" (a
tf.Graph
where the variables have been turned into constants), then it is possible to convert this to a
concrete_function
using
v1.wrap_function
:
def wrap_frozen_graph(graph_def, inputs, outputs):
def _imports_graph_def():
tf.compat.v1.import_graph_def(graph_def, name="")
wrapped_import = tf.compat.v1.wrap_function(_imports_graph_def, [])
import_graph = wrapped_import.graph
return wrapped_import.prune(
tf.nest.map_structure(import_graph.as_graph_element, inputs),
tf.nest.map_structure(import_graph.as_graph_element, outputs))
For example, here is a frozed graph for Inception v1, from 2016:
path = tf.keras.utils.get_file(
'inception_v1_2016_08_28_frozen.pb',
'http://storage.googleapis.com/download.tensorflow.org/models/inception_v1_2016_08_28_frozen.pb.tar.gz',
untar=True)
Downloading data from http://storage.googleapis.com/download.tensorflow.org/models/inception_v1_2016_08_28_frozen.pb.tar.gz
24698880/24695710 [==============================] - 1s 0us/step
Load the
tf.GraphDef
:
graph_def = tf.compat.v1.GraphDef()
loaded = graph_def.ParseFromString(open(path,'rb').read())
Wrap it into a
concrete_function
:
inception_func = wrap_frozen_graph(
graph_def, inputs='input:0',
outputs='InceptionV1/InceptionV1/Mixed_3b/Branch_1/Conv2d_0a_1x1/Relu:0')
Pass it a tensor as input:
input_img = tf.ones([1,224,224,3], dtype=tf.float32)
inception_func(input_img).shape
TensorShape([1, 28, 28, 96])
Estimators
Training with Estimators
Estimators are supported in TensorFlow 2.0.
When you use estimators, you can use
input_fn()
,
tf.estimator.TrainSpec
, and
tf.estimator.EvalSpec
from TensorFlow 1.x.
Here is an example using
input_fn
with train and evaluate specs.
Creating the input_fn and train/eval specs
# Define the estimator's input_fn
def input_fn():
datasets, info = tfds.load(name='mnist', with_info=True, as_supervised=True)
mnist_train, mnist_test = datasets['train'], datasets['test']
BUFFER_SIZE = 10000
BATCH_SIZE = 64
def scale(image, label):
image = tf.cast(image, tf.float32)
image /= 255
return image, label[..., tf.newaxis]
train_data = mnist_train.map(scale).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
return train_data.repeat()
# Define train & eval specs
train_spec = tf.estimator.TrainSpec(input_fn=input_fn,
max_steps=STEPS_PER_EPOCH * NUM_EPOCHS)
eval_spec = tf.estimator.EvalSpec(input_fn=input_fn,
steps=STEPS_PER_EPOCH)
Using a Keras model definition
There are some differences in how to construct your estimators in TensorFlow 2.0.
We recommend that you define your model using Keras, then use the
tf.keras.estimator.model_to_estimator
utility to turn your model into an estimator. The code below shows how to use this utility when creating and training an estimator.
def make_model():
return tf.keras.Sequential([
tf.keras.layers.Conv2D(32, 3, activation='relu',
kernel_regularizer=tf.keras.regularizers.l2(0.02),
input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dropout(0.1),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dense(10)
])
model = make_model()
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
estimator = tf.keras.estimator.model_to_estimator(
keras_model = model
)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
INFO:tensorflow:Using default config.
INFO:tensorflow:Using default config.
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpfzr8hjlh
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpfzr8hjlh
INFO:tensorflow:Using the Keras model provided.
INFO:tensorflow:Using the Keras model provided.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_core/python/ops/resource_variable_ops.py:1635: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.
Instructions for updating:
If using Keras pass *_constraint arguments to layers.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_core/python/ops/resource_variable_ops.py:1635: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.
Instructions for updating:
If using Keras pass *_constraint arguments to layers.
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpfzr8hjlh', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
rewrite_options {
meta_optimizer_iterations: ONE
}
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpfzr8hjlh', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
rewrite_options {
meta_optimizer_iterations: ONE
}
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:tensorflow:Not using Distribute Coordinator.
INFO:tensorflow:Not using Distribute Coordinator.
INFO:tensorflow:Running training and evaluation locally (non-distributed).
INFO:tensorflow:Running training and evaluation locally (non-distributed).
INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps None or save_checkpoints_secs 600.
INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps None or save_checkpoints_secs 600.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_core/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_core/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Warm-starting with WarmStartSettings: WarmStartSettings(ckpt_to_initialize_from='/tmp/tmpfzr8hjlh/keras/keras_model.ckpt', vars_to_warm_start='.*', var_name_to_vocab_info={}, var_name_to_prev_var_name={})
INFO:tensorflow:Warm-starting with WarmStartSettings: WarmStartSettings(ckpt_to_initialize_from='/tmp/tmpfzr8hjlh/keras/keras_model.ckpt', vars_to_warm_start='.*', var_name_to_vocab_info={}, var_name_to_prev_var_name={})
INFO:tensorflow:Warm-starting from: /tmp/tmpfzr8hjlh/keras/keras_model.ckpt
INFO:tensorflow:Warm-starting from: /tmp/tmpfzr8hjlh/keras/keras_model.ckpt
INFO:tensorflow:Warm-starting variables only in TRAINABLE_VARIABLES.
INFO:tensorflow:Warm-starting variables only in TRAINABLE_VARIABLES.
INFO:tensorflow:Warm-started 8 variables.
INFO:tensorflow:Warm-started 8 variables.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpfzr8hjlh/model.ckpt.
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpfzr8hjlh/model.ckpt.
INFO:tensorflow:loss = 2.462402, step = 0
INFO:tensorflow:loss = 2.462402, step = 0
INFO:tensorflow:Saving checkpoints for 25 into /tmp/tmpfzr8hjlh/model.ckpt.
INFO:tensorflow:Saving checkpoints for 25 into /tmp/tmpfzr8hjlh/model.ckpt.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2020-03-28T01:53:11Z
INFO:tensorflow:Starting evaluation at 2020-03-28T01:53:11Z
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmpfzr8hjlh/model.ckpt-25
INFO:tensorflow:Restoring parameters from /tmp/tmpfzr8hjlh/model.ckpt-25
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/5]
INFO:tensorflow:Evaluation [1/5]
INFO:tensorflow:Evaluation [2/5]
INFO:tensorflow:Evaluation [2/5]
INFO:tensorflow:Evaluation [3/5]
INFO:tensorflow:Evaluation [3/5]
INFO:tensorflow:Evaluation [4/5]
INFO:tensorflow:Evaluation [4/5]
INFO:tensorflow:Evaluation [5/5]
INFO:tensorflow:Evaluation [5/5]
INFO:tensorflow:Inference Time : 0.84085s
INFO:tensorflow:Inference Time : 0.84085s
INFO:tensorflow:Finished evaluation at 2020-03-28-01:53:11
INFO:tensorflow:Finished evaluation at 2020-03-28-01:53:11
INFO:tensorflow:Saving dict for global step 25: accuracy = 0.69375, global_step = 25, loss = 1.55557
INFO:tensorflow:Saving dict for global step 25: accuracy = 0.69375, global_step = 25, loss = 1.55557
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 25: /tmp/tmpfzr8hjlh/model.ckpt-25
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 25: /tmp/tmpfzr8hjlh/model.ckpt-25
INFO:tensorflow:Loss for final step: 0.45250922.
INFO:tensorflow:Loss for final step: 0.45250922.
({'accuracy': 0.69375, 'loss': 1.55557, 'global_step': 25}, [])
Using a custom model_fn
model_fn
If you have an existing custom estimator
model_fn
that you need to maintain, you can convert your
model_fn
to use a Keras model.
However, for compatibility reasons, a custom
model_fn
will still run in 1.x-style graph mode. This means there is no eager execution and no automatic control dependencies.
Custom model_fn with minimal changes
To make your custom
model_fn
work in TF 2.0, if you prefer minimal changes to the existing code,
tf.compat.v1
symbols such as
optimizers
and
metrics
can be used.
Using a Keras models in a custom
model_fn
is similar to using it in a custom training loop:
- Set the
phase appropriately, based on thetraining
argument.mode
- Explicitly pass the model's
to the optimizer.trainable_variables
But there are important differences, relative to a custom loop:
- Instead of using
, extract the losses usingModel.losses
.Model.get_losses_for
- Extract the model's updates using
.Model.get_updates_for
Note: "Updates" are changes that need to be applied to a model after each batch. For example, the moving averages of the mean and variance in a
layers.BatchNormalization
layer.
The following code creates an estimator from a custom
model_fn
, illustrating all of these concerns.
def my_model_fn(features, labels, mode):
model = make_model()
optimizer = tf.compat.v1.train.AdamOptimizer()
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
training = (mode == tf.estimator.ModeKeys.TRAIN)
predictions = model(features, training=training)
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
reg_losses = model.get_losses_for(None) + model.get_losses_for(features)
total_loss=loss_fn(labels, predictions) + tf.math.add_n(reg_losses)
accuracy = tf.compat.v1.metrics.accuracy(labels=labels,
predictions=tf.math.argmax(predictions, axis=1),
name='acc_op')
update_ops = model.get_updates_for(None) + model.get_updates_for(features)
minimize_op = optimizer.minimize(
total_loss,
var_list=model.trainable_variables,
global_step=tf.compat.v1.train.get_or_create_global_step())
train_op = tf.group(minimize_op, update_ops)
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=total_loss,
train_op=train_op, eval_metric_ops={'accuracy': accuracy})
# Create the Estimator & Train
estimator = tf.estimator.Estimator(model_fn=my_model_fn)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
INFO:tensorflow:Using default config.
INFO:tensorflow:Using default config.
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmp8g2a8yh1
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmp8g2a8yh1
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmp8g2a8yh1', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
rewrite_options {
meta_optimizer_iterations: ONE
}
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmp8g2a8yh1', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
rewrite_options {
meta_optimizer_iterations: ONE
}
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:tensorflow:Not using Distribute Coordinator.
INFO:tensorflow:Not using Distribute Coordinator.
INFO:tensorflow:Running training and evaluation locally (non-distributed).
INFO:tensorflow:Running training and evaluation locally (non-distributed).
INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps None or save_checkpoints_secs 600.
INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps None or save_checkpoints_secs 600.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmp8g2a8yh1/model.ckpt.
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmp8g2a8yh1/model.ckpt.
INFO:tensorflow:loss = 2.4837275, step = 0
INFO:tensorflow:loss = 2.4837275, step = 0
INFO:tensorflow:Saving checkpoints for 25 into /tmp/tmp8g2a8yh1/model.ckpt.
INFO:tensorflow:Saving checkpoints for 25 into /tmp/tmp8g2a8yh1/model.ckpt.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2020-03-28T01:53:14Z
INFO:tensorflow:Starting evaluation at 2020-03-28T01:53:14Z
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmp8g2a8yh1/model.ckpt-25
INFO:tensorflow:Restoring parameters from /tmp/tmp8g2a8yh1/model.ckpt-25
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/5]
INFO:tensorflow:Evaluation [1/5]
INFO:tensorflow:Evaluation [2/5]
INFO:tensorflow:Evaluation [2/5]
INFO:tensorflow:Evaluation [3/5]
INFO:tensorflow:Evaluation [3/5]
INFO:tensorflow:Evaluation [4/5]
INFO:tensorflow:Evaluation [4/5]
INFO:tensorflow:Evaluation [5/5]
INFO:tensorflow:Evaluation [5/5]
INFO:tensorflow:Inference Time : 0.96313s
INFO:tensorflow:Inference Time : 0.96313s
INFO:tensorflow:Finished evaluation at 2020-03-28-01:53:15
INFO:tensorflow:Finished evaluation at 2020-03-28-01:53:15
INFO:tensorflow:Saving dict for global step 25: accuracy = 0.553125, global_step = 25, loss = 1.7363777
INFO:tensorflow:Saving dict for global step 25: accuracy = 0.553125, global_step = 25, loss = 1.7363777
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 25: /tmp/tmp8g2a8yh1/model.ckpt-25
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 25: /tmp/tmp8g2a8yh1/model.ckpt-25
INFO:tensorflow:Loss for final step: 0.4678836.
INFO:tensorflow:Loss for final step: 0.4678836.
({'accuracy': 0.553125, 'loss': 1.7363777, 'global_step': 25}, [])
Custom
model_fn
with TF 2.0 symbols
If you want to get rid of all TF 1.x symbols and upgrade your custom
model_fn
to native TF 2.0, you need to update the optimizer and metrics to
tf.keras.optimizers
and
tf.keras.metrics
.
In the custom
model_fn
, besides the above changes, more upgrades need to be made:
- Use
instead oftf.keras.optimizers
.v1.train.Optimizer
- Explicitly pass the model's
to thetrainable_variables
.tf.keras.optimizers
- To compute the
,train_op/minimize_op
- Use
if the loss is scalar lossOptimizer.get_updates()
(not a callable). The first element in the returned list is the desiredTensor
.train_op/minimize_op
- If the loss is a callable (such as a function), use
to get theOptimizer.minimize()
.train_op/minimize_op
- Use
- Use
instead oftf.keras.metrics
for evaluation.tf.compat.v1.metrics
For the above example of
my_model_fn
, the migrated code with 2.0 symbols is shown as:
def my_model_fn(features, labels, mode):
model = make_model()
training = (mode == tf.estimator.ModeKeys.TRAIN)
loss_obj = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
predictions = model(features, training=training)
# Get both the unconditional losses (the None part)
# and the input-conditional losses (the features part).
reg_losses = model.get_losses_for(None) + model.get_losses_for(features)
total_loss=loss_obj(labels, predictions) + tf.math.add_n(reg_losses)
# Upgrade to tf.keras.metrics.
accuracy_obj = tf.keras.metrics.Accuracy(name='acc_obj')
accuracy = accuracy_obj.update_state(
y_true=labels, y_pred=tf.math.argmax(predictions, axis=1))
train_op = None
if training:
# Upgrade to tf.keras.optimizers.
optimizer = tf.keras.optimizers.Adam()
# Manually assign tf.compat.v1.global_step variable to optimizer.iterations
# to make tf.compat.v1.train.global_step increased correctly.
# This assignment is a must for any `tf.train.SessionRunHook` specified in
# estimator, as SessionRunHooks rely on global step.
optimizer.iterations = tf.compat.v1.train.get_or_create_global_step()
# Get both the unconditional updates (the None part)
# and the input-conditional updates (the features part).
update_ops = model.get_updates_for(None) + model.get_updates_for(features)
# Compute the minimize_op.
minimize_op = optimizer.get_updates(
total_loss,
model.trainable_variables)[0]
train_op = tf.group(minimize_op, *update_ops)
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=total_loss,
train_op=train_op,
eval_metric_ops={'Accuracy': accuracy_obj})
# Create the Estimator & Train.
estimator = tf.estimator.Estimator(model_fn=my_model_fn)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
INFO:tensorflow:Using default config.
INFO:tensorflow:Using default config.
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpfkhhz3_j
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpfkhhz3_j
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpfkhhz3_j', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
rewrite_options {
meta_optimizer_iterations: ONE
}
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpfkhhz3_j', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
rewrite_options {
meta_optimizer_iterations: ONE
}
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:tensorflow:Not using Distribute Coordinator.
INFO:tensorflow:Not using Distribute Coordinator.
INFO:tensorflow:Running training and evaluation locally (non-distributed).
INFO:tensorflow:Running training and evaluation locally (non-distributed).
INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps None or save_checkpoints_secs 600.
INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps None or save_checkpoints_secs 600.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpfkhhz3_j/model.ckpt.
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpfkhhz3_j/model.ckpt.
INFO:tensorflow:loss = 2.784197, step = 0
INFO:tensorflow:loss = 2.784197, step = 0
INFO:tensorflow:Saving checkpoints for 25 into /tmp/tmpfkhhz3_j/model.ckpt.
INFO:tensorflow:Saving checkpoints for 25 into /tmp/tmpfkhhz3_j/model.ckpt.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2020-03-28T01:53:18Z
INFO:tensorflow:Starting evaluation at 2020-03-28T01:53:18Z
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmpfkhhz3_j/model.ckpt-25
INFO:tensorflow:Restoring parameters from /tmp/tmpfkhhz3_j/model.ckpt-25
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/5]
INFO:tensorflow:Evaluation [1/5]
INFO:tensorflow:Evaluation [2/5]
INFO:tensorflow:Evaluation [2/5]
INFO:tensorflow:Evaluation [3/5]
INFO:tensorflow:Evaluation [3/5]
INFO:tensorflow:Evaluation [4/5]
INFO:tensorflow:Evaluation [4/5]
INFO:tensorflow:Evaluation [5/5]
INFO:tensorflow:Evaluation [5/5]
INFO:tensorflow:Inference Time : 0.85258s
INFO:tensorflow:Inference Time : 0.85258s
INFO:tensorflow:Finished evaluation at 2020-03-28-01:53:19
INFO:tensorflow:Finished evaluation at 2020-03-28-01:53:19
INFO:tensorflow:Saving dict for global step 25: Accuracy = 0.60625, global_step = 25, loss = 1.5132954
INFO:tensorflow:Saving dict for global step 25: Accuracy = 0.60625, global_step = 25, loss = 1.5132954
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 25: /tmp/tmpfkhhz3_j/model.ckpt-25
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 25: /tmp/tmpfkhhz3_j/model.ckpt-25
INFO:tensorflow:Loss for final step: 0.3996404.
INFO:tensorflow:Loss for final step: 0.3996404.
({'Accuracy': 0.60625, 'loss': 1.5132954, 'global_step': 25}, [])
Premade Estimators
Premade Estimators in the family of
tf.estimator.DNN*
,
tf.estimator.Linear*
and
tf.estimator.DNNLinearCombined*
are still supported in the TensorFlow 2.0 API, however, some arguments have changed:
-
: Removed in 2.0.input_layer_partitioner
-
: Updated toloss_reduction
instead oftf.keras.losses.Reduction
. Its default value is also changed totf.compat.v1.losses.Reduction
fromtf.keras.losses.Reduction.SUM_OVER_BATCH_SIZE
.tf.compat.v1.losses.Reduction.SUM
-
,optimizer
anddnn_optimizer
: this arg has been updated tolinear_optimizer
instead of thetf.keras.optimizers
.tf.compat.v1.train.Optimizer
To migrate the above changes:
- No migration is needed for
sinceinput_layer_partitioner
will handle it automatically in TF 2.0.Distribution Strategy
- For
, checkloss_reduction
for the supported options.tf.keras.losses.Reduction
- For
args, if you do not pass in anoptimizer
,optimizer
ordnn_optimizer
arg, or if you specify thelinear_optimizer
arg as aoptimizer
in your code, you don't need to change anything.string
is used by default. Otherwise, you need to update it fromtf.keras.optimizers
to its correspondingtf.compat.v1.train.Optimizer
tf.keras.optimizers
Checkpoint Converter
The migration to
keras.optimizers
will break checkpoints saved using TF 1.x, as
tf.keras.optimizers
generates a different set of variables to be saved in checkpoints. To make old checkpoint reusable after your migration to TF 2.0, try the checkpoint converter tool.
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 15157 100 15157 0 0 22256 0 --:--:-- --:--:-- --:--:-- 22224
The tool has builtin help:
2020-03-28 01:53:21.210238: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libnvinfer.so.6
2020-03-28 01:53:21.210483: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer_plugin.so.6'; dlerror: libnvinfer_plugin.so.6: cannot open shared object file: No such file or directory
2020-03-28 01:53:21.210501: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:30] Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
usage: checkpoint_converter.py [-h]
{dnn,linear,combined} source_checkpoint
source_graph target_checkpoint
positional arguments:
{dnn,linear,combined}
The type of estimator to be converted. So far, the
checkpoint converter only supports Canned Estimator.
So the allowed types include linear, dnn and combined.
source_checkpoint Path to source checkpoint file to be read in.
source_graph Path to source graph file to be read in.
target_checkpoint Path to checkpoint file to be written out.
optional arguments:
-h, --help show this help message and exit
TensorShape
This class was simplified to hold
int
s, instead of
tf.compat.v1.Dimension
objects. So there is no need to call
.value()
to get an
int
.
Individual
tf.compat.v1.Dimension
objects are still accessible from
tf.TensorShape.dims
.
The following demonstrate the differences between TensorFlow 1.x and TensorFlow 2.0.
# Create a shape and choose an index
i = 0
shape = tf.TensorShape([16, None, 256])
shape
TensorShape([16, None, 256])
If you had this in TF 1.x:
value = shape[i].value
Then do this in TF 2.0:
value = shape[i]
value
16
If you had this in TF 1.x:
for dim in shape:
value = dim.value
print(value)
Then do this in TF 2.0:
for value in shape:
print(value)
16
None
256
If you had this in TF 1.x (Or used any other dimension method):
dim = shape[i]
dim.assert_is_compatible_with(other_dim)
Then do this in TF 2.0:
other_dim = 16
Dimension = tf.compat.v1.Dimension
if shape.rank is None:
dim = Dimension(None)
else:
dim = shape.dims[i]
dim.is_compatible_with(other_dim) # or any other dimension method
True
shape = tf.TensorShape(None)
if shape:
dim = shape.dims[i]
dim.is_compatible_with(other_dim) # or any other dimension method
The boolean value of a
tf.TensorShape
is
True
if the rank is known,
False
otherwise.
print(bool(tf.TensorShape([]))) # Scalar
print(bool(tf.TensorShape([0]))) # 0-length vector
print(bool(tf.TensorShape([1]))) # 1-length vector
print(bool(tf.TensorShape([None]))) # Unknown-length vector
print(bool(tf.TensorShape([1, 10, 100]))) # 3D tensor
print(bool(tf.TensorShape([None, None, None]))) # 3D tensor with no known dimensions
print()
print(bool(tf.TensorShape(None))) # A tensor with unknown rank.
True
True
True
True
True
True
False
Other Changes
- Remove
: TensorFlow's device placement algorithms have improved significantly. This should no longer be necessary. If removing it causes a performance degredation please file a bug.tf.colocate_with
- Replace
usage with the equivalent functions fromv1.ConfigProto
.tf.config
Conclusions
The overall process is:
- Run the upgrade script.
- Remove contrib symbols.
- Switch your models to an object oriented style (Keras).
- Use
ortf.keras
training and evaluation loops where you can.tf.estimator
- Otherwise, use custom loops, but be sure to avoid sessions & collections.
It takes a little work to convert code to idiomatic TensorFlow 2.0, but every change results in:
- Fewer lines of code.
- Increased clarity and simplicity.
- Easier debugging.