机器学习
首先呢,学习可以称为一个举一反三的过程,举个例子:我们在学生时代经常参加的考试,考试的题目在上考场前我们未必做过,但是在考试之前我们通常都会刷很多的题目,通过刷题目学会了解题方法,因此考场上面对陌生问题也可以算出答案。
机器学习的思路也类似:我们可以利用一些训练数据(已经做过的题),使机器能够利用它们(解题方法)分析未知数据(考场的题目)。就像考试前老师给我们预测考试会考什么一样。
简单的一句话:机器学习就是让机器从大量的数据集中学习,进而得到一个更加符合现实规律的模型,通过对模型的使用使得机器比以往表现的更好。
监督学习
定义:从给定的训练数据集中学习出一个函数(模型参数),当新的数据到来时,可以根据这个函数预测结果。监督学习的训练集要求包括输入输出,也可以说是特征和目标。训练集中的标签是由人标注的。监督学习就是最常见的分类(注意和聚类区分)问题,通过已有的训练样本(即已知数据及其对应的输出)去训练得到一个最优模型,再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的。也就具有了对未知数据分类的能力。监督学习的目标往往是让计算机根据已有的数据集去学习我们已经创建好的分类系统,知道输入和输出结果之间的关系。根据这种已知的关系,训练得到一个最优的模型。也就是说,在监督学习中训练数据既有特征(feature)又有标签(label),通过训练,让机器可以自己找到特征和标签之间的联系,在面对只有特征没有标签的数据时,可以判断出标签。通俗一点,可以把机器学习理解为我们教机器如何做事情。
监督学习的分类:回归(Regression)、分类(Classification)
回归(Regression)
回归问题是针对于连续型变量的。
举个例子:预测房屋价格
假设想要预测房屋价格,绘制了下面这样的数据集。水平轴上,不同房屋的尺寸是平方英尺,在竖直轴上,是不同房子的价格,单位时(千万$)。给定数据,假设一个人有一栋房子,750平方英尺,他要卖掉这栋房子,想知道能卖多少钱。
这个时候,监督学习中的回归算法就能派上用场了,我们可以根据数据集来画直线或者二阶函数等来拟合数据。
通过图像,我们可以看出直线拟合出来的150k,曲线拟合出来是200k,所以要不断训练学习,找到最合适的模型得到拟合数据(房价)。
回归通俗一点就是,对已经存在的点(训练数据)进行分析,拟合出适当的函数模型y=f(x),这里y就是数据的标签,而对于一个新的自变量x,通过这个函数模型得到标签y。
分类(Classification)
和回归最大的区别在于,分类是针对离散型的,输出的结果是有限的。
举个例子:估计肿瘤性质
假设某人发现了一个乳腺瘤,在乳腺上有个z肿块,恶性瘤是危险的、有害的;良性瘤是无害的。
假设在数据集中,水平轴是瘤的尺寸,竖直轴是1或0,也可以是Y或N。在已知肿瘤样例中,恶性的标为1,良性的标为0。那么,如下,蓝色的样例便是良性的,红色的是恶性的。
这个时候,机器学习的任务就是估计该肿瘤的性质,是恶性的还是良性的。
那么分类就派上了用场,在这个例子中就是向模型输入人的各种数据的训练样本(这里是肿瘤的尺寸,当然现实生活里会用更多的数据,如年龄等),产生“输入一个人的数据,判断是否患有癌症”的结果,结果必定是离散的,只有“是”或“否”两种情况
所以简单来说分类就是,要通过分析输入的特征向量,对于一个新的向量得到其标签。
无监督学习
定义:输入数据没有被标记,也没有确定的结果。样本数据类别未知,需要根据样本间的相似性对样本集进行分类(聚类,clustering)试图使类内差距最小化,类间差距最大化。通俗点将就是实际应用中,不少情况下无法预先知道样本的标签,也就是说没有训练样本对应的类别,因而只能从原先没有样本标签的样本集开始学习分类器设计。
非监督学习目标不是告诉计算机怎么做,而是让它(计算机)自己去学习怎样做事情
接刚刚上面机器学习解释时用到的例子来更好理解一下二者的区别:
对于平时的考试来说,监督学习相当于我们做了很多题目都知道它的标准答案,所以在学习的过程中,我们可以通过对照答案,来分析问题找出方法,下一次在面对没有答案的问题时,往往也可以正确地解决。 而无监督学习,是我们不知道任何的答案,也不知道自己做得对不对,但是做题的过程中,就算不知道答案,我们还是可以大致的将语文,数学,英语这些题目分开,因为这些问题内在还是具有一定的联系。
如下图所示,在无监督学习中,我们只是给定了一组数据,我们的目标是发现这组数据中的特殊结构。例如我们使用无监督学习算法会将这组数据分成两个不同的簇,,这样的算法就叫聚类算法。
两者不同点
1.有监督学习方法必须要有训练集与测试样本。在训练集中找规律,而对测试样本使用这种规律。而非监督学习没有训练集,只有一组数据,在该组数据集内寻找规律。
2.有监督学习的方法就是识别事物,识别的结果表现在给待识别数据加上了标签。因此训练样本集必须由带标签的样本组成。而非监督学习方法只有要分析的数据集的本身,预先没有什么标签。如果发现数据集呈现某种聚集性,则可按自然的聚集性分类,但不予以某种预先分类标签对上号为目的。
3.非监督学习方法在寻找数据集中的规律性,这种规律性并不一定要达到划分数据集的目的,也就是说不一定要“分类”。这一点是比有监督学习方法的用途要广。 譬如分析一堆数据的主分量(决策树,找出哪个属性提供的信息最大),或分析数据集有什么特点都可以归于非监督学习方法的范畴。
图文来自:https://www.jianshu.com/p/682c88cee5a8