定义网络结构
定义所要转化模型的网络结构,得到最后一层的输出,并且给他命名一个名字,在这里给他定义为out,因为后面把ckpt变成pb时,会用到一个函数,这个函数有一个参数叫做output_node_names,也就是输出节点的名字,所以我们需要定义输出节点的名字。
output_graph_def = graph_util.convert_variables_to_constants(
sess=sess,
input_graph_def=input_graph_def, # = sess.graph_def,
output_node_names=['out'])
去掉网络的dropout单元
Dropout单元是在训练过程中避免过拟合的,因此在预测时,不需要加入Dropout单元,因此在恢复网络结构时。不需要将Dropout单元进行恢复,因此不带有Dropout单元的网络结构为:
# 第一层卷积
W_conv1 = weight_variable([3, 3, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
# 第二层卷积
W_conv2 = weight_variable([3, 3, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
# 全连接
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
#输出
W_fc2 = weight_variable([1024, 2])
b_fc2 = bias_variable([2])
out = tf.nn.softmax((tf.matmul(h_fc1, W_fc2) + b_fc2),name='out')
代码实现
import tensorflow as tf
from tensorflow.python.framework import graph_util
from PIL import Image
import os
import numpy as np
#构造网络函数
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def freeze_graph(path, output):
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.8,
allow_growth=True) ##每个gpu占用0.8 的显存
config = tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True)
sess = tf.Session(config=config)
# 定义输入的x
x = tf.placeholder(tf.float32, [1, 28, 28],name="placeholder1")
x_image = tf.reshape(x, [-1, 28, 28, 1])
# 第一层卷积
W_conv1 = weight_variable([3, 3, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
# 第二层卷积
W_conv2 = weight_variable([3, 3, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
# 全连接层
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
#输出层
W_fc2 = weight_variable([1024, 2])
b_fc2 = bias_variable([2])
out = tf.nn.softmax((tf.matmul(h_fc1, W_fc2) + b_fc2),name='out')
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
softmax_result = out
# print(image.shape)
saver = tf.train.import_meta_graph(path + '.meta', clear_devices=True)
graph = tf.get_default_graph()
input_graph_def = graph.as_graph_def()
with tf.Session() as sess:
saver.restore(sess, path)
output_graph_def = graph_util.convert_variables_to_constants(
sess=sess,
input_graph_def=input_graph_def, # = sess.graph_def,
output_node_names=['out'])
with tf.gfile.GFile(output, 'wb') as fgraph:
fgraph.write(output_graph_def.SerializeToString())
if __name__ == '__main__':
#
freeze_graph('H:/models/model-3.ckpt', 'H:/models/model-3.pb')