一.数列极限
1.概念
(1)定义:
(2)无穷小数列:
定理2.1:数列{an}收敛于a的充要条件是{an-a}为无穷小数列
(3)无穷大数列:
2.收敛数列的性质
(1)唯一性(定理2.2):
若{an}收敛,则它只有1个极限
(2)有界性(定理2.3):
若{an}收敛,则{an}为有界数列,即∃M>0,对∀n∈Z+,都有|an|≤M
(3)保号性(定理2.4):
若 lim n → ∞ a n \displaystyle \lim_{n \to \infty}{a_n} n→∞liman=a>0,则对∀a’∈(0,a)(或a’∈(a,0)),∃N>0,使得当n>N,有an>a’(或an<a’)
推论:设 lim n → ∞ a n \displaystyle \lim_{n \to \infty}{a_n} n→∞liman=a, lim n → ∞ b n \displaystyle \lim_{n \to \infty}{b_n} n→∞limbn=b,a<b,则∃N,使得当n>N,有an<bn
(4)保不等式性(定理2.5):
设{an}和{bn}均为收敛数列,若∃N0>0,使得当n>N0时,有an≤bn,则 lim n → ∞ a n \displaystyle \lim_{n \to \infty}{a_n} n→∞liman≤ lim n → ∞ b n \displaystyle \lim_{n \to \infty}{b_n} n→∞limbn
(5)迫敛性(定理2.6):
设收敛数列{an},{nn}都以a为极限,{cn}满足:∃N0>0,当n>N0时,有an≤cn≤bn,则{cn}收敛,且 lim n → ∞ c n \displaystyle \lim_{n \to \infty}{c_n} n→∞limcn=a
(6)四则运算法则(定理2.7):
若{an}与{bn}为收敛数列,则{an±bn},{an·bn}也都是收敛数列,且有 lim n → ∞ ( a n ± b n ) \displaystyle \lim_{n \to \infty}{(a_n±b_n)} n→∞lim(an±bn)= lim n → ∞ a n \displaystyle \lim_{n \to \infty}{a_n} n→∞liman± lim n → ∞ b n \displaystyle \lim_{n \to \infty}{b_n} n→∞limbn, lim n → ∞ ( a n ⋅ b n ) \displaystyle \lim_{n \to \infty}{(a_n·b_n)} n→∞lim(an⋅bn)= lim n → ∞ a n \displaystyle \lim_{n \to \infty}{a_n} n→∞liman· lim n → ∞ b n \displaystyle \lim_{n \to \infty}{b_n} n→∞limbn
特别地,当bn为常数c, lim n → ∞ ( a n ± c ) \displaystyle \lim_{n \to \infty}{(a_n±c)} n→∞lim(an±c)= lim n → ∞ a n \displaystyle \lim_{n \to \infty}{a_n} n→∞liman±c, lim n → ∞ c a n \displaystyle \lim_{n \to \infty}{ca_n} n→∞limcan=c lim n → ∞ a n \displaystyle \lim_{n \to \infty}{a_n} n→∞liman
若再假设bn≠0且 lim n → ∞ b n \displaystyle \lim_{n \to \infty}{b_n} n→∞limbn≠0,则{ a n b n \frac{a_n}{b_n} bnan}也是收敛数列,且有 lim n → ∞ a n b n \displaystyle \lim_{n \to \infty}\frac{a_n}{b_n} n→∞limbnan= lim n → ∞ a n lim n → ∞ b n \frac{\displaystyle \lim_{n \to \infty}{a_n}}{\displaystyle \lim_{n \to \infty}{b_n}} n→∞limbnn→∞liman
3.子列:
4.单调数列:
5.数列极限存在的条件
(1)数列收敛的充要条件(定理2.8):
数列{an}收敛的充要条件是:{an}的∀子列都收敛
(2)单调有界收敛定理(定理2.9):
在实数系中,有界的单调数列必有极限
(3)致密性定理(定理2.10):
引子:任何数列都∃单调子列 致密性定理:任何有界数列必定有收敛的子列
(4)柯西收敛准则(Cauchy’s Convergence Test;定理2.11):
数列{an}收敛的充要条件是:对∀ ϵ \epsilon ϵ>0,∃N∈Z+,使得当n,m>N时,有|an-am|< ϵ \epsilon ϵ
这个定理从理论上完全解决了数列极限的存在性问题
二.函数极限
1.概念
(1)函数的极限:
①x趋于 ∞ \infty ∞时的极限: ②x趋于x0时的极限:
(2)函数的单侧极限:
某些函数在其定义域上某些点左侧与右侧的解析式不同(如分段函数),或函数在某些点处仅在某1侧有定义(如在定义区间断点处),这时函数在这些点处的极限只能单侧地给出定义
(3)函数的单侧极限与极限的关系:
定理3.1: lim x → x 0 f ( x ) \displaystyle \lim_{x \to x_0}{f(x)} x→x0limf(x)=A⇔ lim x → x 0 + f ( x ) \displaystyle \lim_{x \to x_0^+}{f(x)} x→x0+limf(x)= lim x → x 0 − f ( x ) \displaystyle \lim_{x \to x_0^-}{f(x)} x→x0−limf(x)=A
常用于说明某些极限不存在,如 lim x → 0 + s g n x \displaystyle \lim_{x \to 0^+}{sgnx} x→0+limsgnx≠ lim x → 0 − s g n x \displaystyle \lim_{x \to 0^-}{sgnx} x→0−limsgnx,故 lim x → 0 s g n x \displaystyle \lim_{x \to 0}{sgnx} x→0limsgnx不存在
(4)非正常极限 ∞ \infty ∞:
2.函数极限的性质
- 以下性质适用于全部6类函数极限或单侧极限,证明以 lim x → x 0 f ( x ) \displaystyle \lim_{x \to x_0}{f(x)} x→x0limf(x)为例,其余5类极限的性质的证明只需在此基础上略作修改
(1)唯一性(定理3.2):
若极限 lim x → x 0 f ( x ) \displaystyle \lim_{x \to x_0}{f(x)} x→x0limf(x)存在,则此极限是唯一的
(2)局部有界性(定理3.3):
若 lim x → x 0 f ( x ) \displaystyle \lim_{x \to x_0}{f(x)} x→x0limf(x)存在,则f在x0的某去心邻域U°(x0)上有界
(3)局部保号性(定理3.4):
若 lim x → x 0 f ( x ) \displaystyle \lim_{x \to x_0}{f(x)} x→x0limf(x)=A>0(或<0),则对∀0<r<A(或0<r<-A),∃U°(x0),使得对∀x∈U°(x0),有f(x)>r>0(或f(x)<-r<0)
(4)保不等式性(定理3.5):
设 lim x → x 0 f ( x ) \displaystyle \lim_{x \to x_0}{f(x)} x→x0limf(x)与 lim x → x 0 g ( x ) \displaystyle \lim_{x \to x_0}{g(x)} x→x0limg(x)均存在,且在U°(x0;δ’)上有f(x)≤g(x),则 lim x → x 0 f ( x ) \displaystyle \lim_{x \to x_0}{f(x)} x→x0limf(x)≤ lim x → x 0 g ( x ) \displaystyle \lim_{x \to x_0}{g(x)} x→x0limg(x)(记为(3)式)
(5)迫敛性(定理3.6):
夹逼定理(Squeeze Theorem/Sandwich Theorem):设 lim x → x 0 f ( x ) \displaystyle \lim_{x \to x_0}{f(x)} x→x0limf(x)= lim x → x 0 g ( x ) \displaystyle \lim_{x \to x_0}{g(x)} x→x0limg(x)=A,且在U°(x0;δ’)上有f(x)≤h(x)≤g(x),则 lim x → x 0 h ( x ) \displaystyle \lim_{x \to x_0}{h(x)} x→x0limh(x)=A
(6)四则运算法则(定理3.7):
若极限 lim x → x 0 f ( x ) \displaystyle \lim_{x \to x_0}{f(x)} x→x0limf(x)与 lim x → x 0 g ( x ) \displaystyle \lim_{x \to x_0}{g(x)} x→x0limg(x)均存在,则 lim x → x 0 [ f ( x ) ± g ( x ) ] \displaystyle \lim_{x \to x_0}{[f(x)±g(x)]} x→x0lim[f(x)±g(x)]与 lim x → x 0 [ f ( x ) ± g ( x ) ] \displaystyle \lim_{x \to x_0}{[f(x)±g(x)]} x→x0lim[f(x)±g(x)]也存在,且 ① lim x → x 0 [ f ( x ) ± g ( x ) ] \displaystyle \lim_{x \to x_0}{[f(x)±g(x)]} x→x0lim[f(x)±g(x)]= lim x → x 0 f ( x ) \displaystyle \lim_{x \to x_0}{f(x)} x→x0limf(x)± lim x → x 0 g ( x ) \displaystyle \lim_{x \to x_0}{g(x)} x→x0limg(x) ② lim x → x 0 [ f ( x ) ⋅ g ( x ) ] \displaystyle \lim_{x \to x_0}{[f(x)·g(x)]} x→x0lim[f(x)⋅g(x)]= lim x → x 0 f ( x ) \displaystyle \lim_{x \to x_0}{f(x)} x→x0limf(x)· lim x → x 0 g ( x ) \displaystyle \lim_{x \to x_0}{g(x)} x→x0limg(x)
又若 lim x → x 0 g ( x ) \displaystyle \lim_{x \to x_0}{g(x)} x→x0limg(x)≠0,则 lim x → x 0 f ( x ) g ( x ) \displaystyle \lim_{x \to x_0}{\frac{f(x)}{g(x)}} x→x0limg(x)f(x)存在,且有 ③ lim x → x 0 f ( x ) g ( x ) \displaystyle \lim_{x \to x_0}{\frac{f(x)}{g(x)}} x→x0limg(x)f(x)= lim x → x 0 f ( x ) lim x → x 0 g ( x ) \frac{\displaystyle \lim_{x \to x_0}{f(x)}}{\displaystyle \lim_{x \to x_0}{g(x)}} x→x0limg(x)x→x0limf(x)
3,函数极限存在的条件
(1)归结原则(定理3.8):
- 海涅定理对全部6种类型的极限均成立,下面以x→x0的形式为例
海涅定理(Heine Theorem):设f在U°(x0;δ’)上有定义, lim x → x 0 f ( x ) \displaystyle \lim_{x \to x_0}{f(x)} x→x0limf(x)存在的充要条件是:对∀含于U°(x0;δ’)且以x0为极限的数列{xn}, lim n → ∞ f ( n ) \displaystyle \lim_{n \to \infty}{f(n)} n→∞limf(n)都存在且相等
(2)加强版归结原则(定理3.9
- 对4种单侧极限,相应的归结原则可表述为更强的形式,下面以x→ x 0 + x_0^+ x0+的形式为例
设函数f在某去心右邻域U°+(x0)有定义, lim x → x 0 + f ( x ) \displaystyle \lim_{x \to x_0^+}{f(x)} x→x0+limf(x)=A的充要条件是:对∀以x0为极限的递减数列 x n ⊊ U ° + ( x 0 ) {x_n} \subsetneq {U°_+(x~0~)} xn⊊U°+(x 0 ),有 lim n → ∞ f ( n ) \displaystyle \lim_{n \to \infty}{f(n)} n→∞limf(n)=A
(3)函数的单调有界收敛定理(定理3.10):
- 适用于全部4类单侧极限,下面以x→ x 0 + x_0^+ x0+的形式为例
设f为定义在U°+(x0)上的单调有界函数,则 lim x → x 0 + f ( x ) \displaystyle \lim_{x \to x_0^+}{f(x)} x→x0+limf(x)存在
(4)柯西准则(Cauchy Criterion,定理3.11):
设函数f在U°(x0;δ’)上有定义, lim x → x 0 f ( x ) \displaystyle \lim_{x \to x_0}{f(x)} x→x0limf(x)存在的充要条件是:对∀ ϵ \epsilon ϵ>0,∃0<δ<δ’,使对∀x’,x’‘∈U°(x0;δ),有|f(x’)-f(x’’)|< ϵ \epsilon ϵ
相应地, lim x → x 0 f ( x ) \displaystyle \lim_{x \to x_0}{f(x)} x→x0limf(x)不存在的充要条件为:∃ ϵ 0 \epsilon_0 ϵ0>0,使对∀δ>0,总有x’,x’‘∈U°(x0;δ),使得|f(x’)-f(x’’)|≥ ϵ 0 \epsilon_0 ϵ0
4.2个重要极限
(1) lim x → 0 s i n x x \displaystyle \lim_{x \to 0}{\frac{sinx}{x}} x→0limxsinx=1:
引子: s i n x sinx sinx< x x x< t a n x tanx tanx(0<x< π 2 \frac{π}{2} 2π)
证明 lim x → 0 s i n x x \displaystyle \lim_{x \to 0}{\frac{sinx}{x}} x→0limxsinx=1:
(2) lim x → ∞ ( 1 + 1 x ) x = lim x → 0 ( 1 + x ) 1 x = e \displaystyle \lim_{x \to \infty}{(1+\frac{1}{x})^x}=\displaystyle \lim_{x \to 0}{(1+x})^{\frac{1}{x}}=e x→∞lim(1+x1)x=x→0lim(1+x)x1=e:
数列极限 lim n → ∞ ( 1 + 1 n ) n = lim n → 0 ( 1 + n ) 1 n = e \displaystyle \lim_{n \to \infty}{(1+\frac{1}{n})^n}=\displaystyle \lim_{n \to 0}{(1+n})^{\frac{1}{n}}=e n→∞lim(1+n1)n=n→0lim(1+n)n1=e:
函数极限 lim x → ∞ ( 1 + 1 x ) x = lim x → 0 ( 1 + x ) 1 x = e \displaystyle \lim_{x \to \infty}{(1+\frac{1}{x})^x}=\displaystyle \lim_{x \to 0}{(1+x})^{\frac{1}{x}}=e x→∞lim(1+x1)x=x→0lim(1+x)x1=e:
三.无穷小量与无穷大量
1.无穷小量:
(1)定义:
无穷小量必定是有界量
(2)无穷小量的性质:
1.两个(系统类型的)无穷小量的和/差/积仍为无穷小量
\quad 1.1有限个(系统类型的)无穷小量的和/差/积仍为无穷小量
2.无穷小量与有界量的乘积为无穷小量
(3)函数极限的存在性与无穷小量的关系:
lim x → x 0 f ( x ) \displaystyle \lim_{x \to x_0}{f(x)} x→x0limf(x)⇔f(x)-A是x→x0时的无穷小量
(4)无穷小量阶的比较:
(5)等价无穷小在求极限时的应用(定理3.12):
设函数f,g,h在U°(x0)上有定义,且有f(x) ~ g(x)(x→x0),则有 ①若 lim x → x 0 [ f ( x ) ⋅ h ( x ) ] \displaystyle \lim_{x \to x_0}{[f(x)·h(x)]} x→x0lim[f(x)⋅h(x)]=A,则 lim x → x 0 [ g ( x ) ⋅ h ( x ) ] \displaystyle \lim_{x \to x_0}{[g(x)·h(x)]} x→x0lim[g(x)⋅h(x)]=A ②若 lim x → x 0 h ( x ) f ( x ) \displaystyle \lim_{x \to x_0}{\frac{h(x)}{f(x)}} x→x0limf(x)h(x)=B,则 lim x → x 0 h ( x ) g ( x ) \displaystyle \lim_{x \to x_0}{\frac{h(x)}{g(x)}} x→x0limg(x)h(x)=B
代换时的注意事项:
3.无穷大量:
(1)定义:
(2)无穷大量同样有阶的概念,可以仿照无穷小量给出
(3)无穷小量与无穷大量:
4.渐近线: