Backto Maths Index
基本初等函数公式
- C ′ = 0 C' = 0 C′=0 (C is constant)
- ( x a ) ′ = a x a − 1 (x^a)' = ax^{a-1} (xa)′=axa−1, 多项式
- ( a x ) ′ = a x ⋅ ln a ( a > 0 , a ≠ 1 ) ; ( e x ) ′ = e x (a^x)' = a^x\cdot \ln a(a>0, a \neq 1); (e^x)' = e^x (ax)′=ax⋅lna(a>0,a̸=1);(ex)′=ex, 指数函数
- ( log a ∣ x ∣ ) ′ = 1 x ln a , ( ln ∣ x ∣ ) ′ = 1 x (\log_a\vert x \vert)' = \frac 1 {x\ln a}, (\ln\vert x \vert)' = \frac 1 x (loga∣x∣)′=xlna1,(ln∣x∣)′=x1, 对数函数
- ( sin x ) ′ = cos x (\sin x)' = \cos x (sinx)′=cosx
- ( cos x ) ′ = − sin x (\cos x)' = -\sin x (cosx)′=−sinx
基本求导法则
- 线性法则 ( a u + b v ) ′ = a u ′ + b v ′ (au+bv)' = au' + bv' (au+bv)′=au′+bv′
- 积法则 $(uv)’ = u’v + uv’ $
- 商法则 ( u v ) ′ = u ′ v − u v ′ v 2 (\frac u v)' = \frac {u'v - uv'}{v^2} (vu)′=v2u′v−uv′
- 链式法则 ( f ( u ( x ) ) ) ′ = f ′ ( u ( x ) ) u ′ ( x ) (f(u(x)))' = f'(u(x))u'(x) (f(u(x)))′=f′(u(x))u′(x)
Ref
- 基本导数公式_百度文库