文章目录
- 1、abc坐标系
- 2、αβ坐标系
-
- 2.1、Clark变换
- 2.2、αβ坐标系电流图解
- 3.dq坐标系
-
- 3.1、park变换
- 3.2、dq坐标系电流图解
1、abc坐标系
向永磁同步电机通入如下三相电流
x = -pi:0.01:pi;
u = sin(x);
v = sin(x - 2pi/3);
w = sin(x + 2pi/3);
根据永磁同步电机转矩方程
Te = -np * φf * [iu * sin(θ) + iv * sin(θ – 2pi/3) + iw * sin(θ + 2pi/3)]
设γ = [iu * sin(θ) + iv * sin(θ – 2pi/3) + iw * sin(θ + 2pi/3)]
因为np,φf为常数,转矩与γ成比例
此处重点关注三相电流在各自方向的合成量γ,将三相电流按各自方向画出,用*表示,γ用o表示,随着时间变化,γ做圆周运动。
γ的幅度为相电流幅度峰值的1.5倍
uvw幅值随时间变化波形如下:
2、αβ坐标系
2.1、Clark变换
使α轴与u轴重合,β轴滞后α轴90度,得到
Iα = 3/2Iu;
Iβ = 3/2(Iu + 2*Iv)/sqrt(3);
其中为了使电流幅值不变,乘以系数3/2
2.2、αβ坐标系电流图解
可以看到,因为α轴与u轴重合,αβ坐标系的γ与uvw坐标系中的γ顺时针旋转90度后的运动轨迹一致。
αβ幅值随时间变化波形如下
3.dq坐标系
3.1、park变换
θ=0时,使d轴与α轴重合,得到
Id = Iαcos(θ) + Iβsin(θ);
Iq = Iβcos(θ) - Iαsin(θ);
3.2、dq坐标系电流图解
可以看到,因为d轴与α轴重合,dq坐标系的γ与αβ坐标系中的γ运动轨迹一致。
dq幅值随时间变化波形如下
可见,在不同的坐标系下γ的运动轨迹一致,三种坐标系都能反应电机的运动状态。
因为dq坐标系中d轴电流q轴电流为直流量,可以使用控制直流电机的策略控制交流电机,且d轴方向为永磁同步电机励磁方向,q轴方向为永磁同步电机转矩方向,故矢量控制中使用坐标变换的方式将励磁电流和转矩电流解耦,以便于实现低速大转矩或者弱磁控制。